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221.00-1

Mathematics - Course 221

OBJECTIVES

221.10-1 Basic Reliability Concepts

1. Given peA) and P(B), the probabilities of independent
events A and B, respectively, calculate peA and B) and

,P(A or B), using the formulas:

PtA and B) = P(A)P(B) , and

P(A or B) = PtA) + P(B) - P(A)P(B).

2. Define (a)
(b)
(c)
(d)

independent events
reliability
unreliability
unavailability of a safety system.

3. Given reliability R, calculate unreliability, Q, and vice
versa.

4. State two methods of improving reliability of safety
systems.

5. Calculate component failure rate, A, given a total number
of failures amongst a given number of components during a
given time interval.

6. Calculate the test interval, T, in years, given the test
frequency in tests per shift, day, week, month, or year.

7. Given information determining any two of the variables
Q, A, T, calculate the third variable for a tested safety
system.

8. Given information determining the failure rate of the
regulating system and the unavailability of the protective
system, calculate the annual risk of a reactor power
excursion.

9. Apply the above principles to calculate the unreliability
ofa network of components, given information determining
the unreliabilities of the network components.

April 1980
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221. 00-1

221.20-1 The Straight Line

1. Define: Ca) slope of a line
(b) rise of a line segment
(e) run of a line segment
Cd) angle of inclination of a line

2. Write down the relationship between

Ca) slope ro, rise, and run
(b) slope ro, and angle of inclination, e

3. State the significance to orientation of a line if the line
slope is

(a) positive
(b) negative
(0) zero
(d) undefined

4. Calculate the slope of a line, given

(a) two points on the line
(b) the slope of a parallel line
(e) the slope of a perpendicular line
Cd) the equation of the line
(e) the rise and the run of a segment of the line
(f) the angle of inclination of the line

5. Given the slope of a line, calculate the change in y
corresponding to a given change in x, and vice versa.

6. Identify whether the equation of a line is given in general
or slope-intercept form, and convert from the one form to
the other.

7. Find the equation of a line, given

(a) two points on the line
(b) one point on the line and the slope
(c) the slope of the line and the y-intercept

8. Graph a line given its equation.

·2-



221.00-1

221.20-2 The Derivative

1. State that for a linear function f(x) the following are
equivalent:

(a) , the slope
(b) 'the 'instantaneous' rate of change of f with respect

to x at any point on the graph, y ~ f(x}.
(e) the average rate of change of f with respect to x over

any x-interval.

2. Define the derivative of a function f(x).

3. Recognize and use the notation:

(a)
~
dx (b) f'(x)

4. State that the graphical significance of f'{xl is that
fl(x) is the slope of the tangent to the curve y = f(x) at
(x, f (x) ) •

5. State and apply

(a) xn
(b) of (x)
( 0) 0
( d) f(x) ± g(x)

the rules for differentiating the following:

221.20-3 Simple Applications of Derivatives

1. Given the function f(x) I find

(a) the slope, and
(b) the equation of the tangent and normal to the curve

y = f{x) at any given point (XII Yl) on the curve.

2. Differentiate a given polynominal displacement function to
obtain the corresponding velocity function.

3. Differentiate a given polynominal velocity function to
obtain the corresponding acceleration function.

- 3 -



221.20-4 Differentiating Exponential Functions

1. Differentiate functions of the form

(a) f (x) = keg (x)

(b) f(x) = P(x) ± keg(x)

where k is a constant, and g(x) and P(x} are both
polynominals.

2.
-AtGiven the nuclear decay formula, N(t) = Noe , prove that

(al

(b)

dN _
dt -

A(t)

-AN

-At dN= Aoe , where A = -at

3. Given any two of the variables A, A, N (activity, decay
constant, number of radioactive nuclei, respectively),
calculate the third variable.

4. Given any three of the following variables, calculate the
fourth variable:

(b)

5.

(a) N, No, A, t
(b) A, Ao, A, t
(c) P, Po, T, t

Given the reactor
prove that

dP P
(a) dt = T

d 1
dt lnP = T

(see
(see
(see

power

nuclear decay formula above)
activity decay formula above)
poW'er growth formula below)

growth formula P(t) = poet/T

- 4 -

6. State the advantage of

(a) a log power signal (over a linear power signal) for
power indication and control

(b) a rate log power signal for reactor protection.



221.00-1

221.20-5 The Derivative in Science and Technology

1. Translate a given verbal rate-at-change statement into a
differential equation, and vice versa.

2. Given a sketch showing the fluctuation of a controlled
parameter about set point, sketch on the same time axis,
typical corresponding proportional component, derivative
component, and total response of a proportional-derivative
controller.

3. For the case of tank level control via regulation of inflow,
sketch typical level fluctuations following a step change
in outflow for

(a) proportional only control
(b) proportional plus derivative control

4. State two advantages of adding a derivative component to
proportional control.

221.30-1 The Integral

1. State that integrat,ion is the opposite of differentiation.

2. Recognize and use the integral notation.

3. Integrate functions of the following forms:

(a)

lb)

Ie)
ld)

f(x) ~ 0

f(x) ~ x n

f(x) ~ ef(x)f'(x)
f(x) ~ g(x) ± hex)

4. Given an acceleration function, obtain the corresponding
velocity and displacement functions by integration.

5. Given a velocity function, integrate to obtain the
corresponding displacement function.

6. Given the equation of a curve, y = f(x), find the area
under the curve in the interval x = a to x = b by evaluating
the appropriate definite integral.

- 5 -
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221.00-1

221.30-2 Applications of The Integral as an Infinite Sum

1. Find the area between two curves (one of which could be an
axis) by applying the 'slice technique', including a diagram
showing representative slice.

2. Given force F as a function of displacement X, c~lculate

the work done by this force acting through x = a to x = b.

3. Given a sketch showing the fluctuation of a controlled
parameter about set point, sketch on the same time axis
typical corresponding proportional component, reset
component, and total response of a proportional-integral
contrOller.

4~ For the case of tank level control via regulation of inflow,
sketch typical level fluctuations following a step change
in outflow for

(a) proportional only control
(b) proportional plus reset control.

5. State the advantage of adding a reset component to propor­
tional control.

L.C. Haacke
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r.1ilti1f:'mFl~-j(;S - Course 221

INTRODUCTION

I COURSE CONTENT AND ORG}\NI ZATION

(a) Conten-t

This course provides ?in introd'.lction t.o two topics:

(1) equipment r~linhiZity evaluation, and

(2) (~alCuZu8.

Reliabili.ty is a specific engineering topic, whereas
calculus is a basic mathematical tool. Although
slightly more adv2.!lced reliability theory involves the
use of calculus, as doe~3 practically every branch of
science and technoloqy, roliAbility and calculus appear
in this CQ:a:,:;c: FlO:; ',:';,'~'::~ated bJpics.

Reliability caLcuLlt:i.(Jn£; jJo.:ov:Ldc quantitative (ie,
numericali answers to such questions as the following:

- How reliable is this equipment?
What is the annunl ~isk ot a reactor acci­
dent.?
How frequcr:tly shoqld t.his safety system be
tested?

Calculus provides t_be notation and techniques for solv­
ing two general classes of problems:

(1) How to find the true I or I instantaneous I rate
of change of one variable with respect. to
another, given the one as a function of the
other (differcnti.al calculus), and:

(2) The inverse of problem (l) - How to find one
variable as Cl function of another, given the
rate of chanqc of the one with respect to the
other (integral ca.lculus).

These techniques are applied first to the familiar
quantities of velocity and acceleration, and subse­
quently to the time-dependent J..lhenomena of reactor
power growth, nuclear rlecay, water purification by ion
exchange, and negat_ive feedback in control loops.

This text makes no pretense at rigor. The least pos­
sible content and form.'-l.l i.sm hc~ve been introduced to
reach the goal of treat,inq the above applications.

April 1980 - 1 -



221. 00-2

(b) Organization

Six lessons reprinted from levels 4 and 3 Mathematics
have been placed in front of the level 2 lessons.
These six lessons provide essential background for the
level 2 lessons. (Trainees will be checked out on the
skills of these level 4 and 3 lessons only as these
skills are involved in doing level 2 test items.) The
text concludes with four appendices containing review
exercises, selected AECB examination questions, methods
of solving quadratic equations, and assignment answers,
respectively.

II SUGGESTIONS REGARDING USE OF THIS TEXT

(1) Before becoming engrossed in the details of any lesson,
scan its entire contents, paying particular attention
to headings. Try to formulate a general impression of
what you are expected to learn.

(2) Work through examples written into the text, referring
to the text as necessary. Persist until you can work
examples unaided.

(3) Do ALL assignments at the conclusions of the lessons.

(4) Practice your skills on the numerous review exercises
provided in Appendix I.

III WHY CALCULUS AT LEVEL 2?

Calculus has formerly been reserved for level I in the NGD
training program. Calculus is now being introduced at level 2,
but this course is far more introductory and narrower in scope
than the old level 1 course. Whereas the old level I course was
first year university level, this course is sub-Ontario Grade 13
level.

Any discussion of training course content must be held in
the light of the prevailing philosphy of training. To choose
control room operator as an example of a position for which level
2 mathematics ispi:-erequisite, two possible training philosophies
are as follows:

(1) The operator needs to know nothing more than the appro­
priate resp~nse to each possible annunciation or se­
quence of annunciations, ie, he is 'programmed l to res ...
pond to eve:r:7 eventLllity. 'thus his training should
consist entirely of rote memorization of procedures.

- 2 -



221.00-2

(2) Some operating procedures and emergency procedures must
be learned and practised to the point where they can be
performed without first having to think them through,
but the operator should understand the plant systems
well enough that he can make reasoned responses to such
other plant situations as may arise.

Some companies lean towards philosophy (1) above, but there
are problems with it. For one thing, the number of possible com­
binations and permutations of annunciations in a CANDU control
room is so large, that to memorize detailed procedures for each
one of them is impractical. Secondly, playing the role of a pro­
grammed robot could be demoralizing - people generally like to
feel that they know what they are doing, and perform better when
this is the case.

In any event, Ontario Hydro leans to philosphy (2). So does
the AECB. Consequently, the prospective operator gets his level
2 training courses. And writes his AECB's.

calculus provides the concepts, notation, and techniques
necessary to a quantitative analysis and description of science
and technology. Introductory calculus is therefore relevant
background to other level 2 training, which concerns various as­
pects of nuclear science and technology. For example, the back­
ground knowledge of exponential and logarithmic functions, and of
rates of change and integration, provided by this course, facili­
tates a quantitative or semi-quantitative discussion of reactor
power changes and nuclear decay phenomena in the level 2 Nuclear
Theory course, and of derivative and integral control in
Instrumentation & Control courses.

A perusal of Appendix I confirms the relevance of 221 course
content to the AECB examinations sat by operators. The point
here is not that the AECB requires quantitative analyses with
formal applications of calculus, but rather that the trainee is
examined on subjects whose quantitative analysis certainly does
involve calculus, and that the trainee with the background funda­
mental to understanding such subjects on the (higher) quantitative
level is better able to understand and discuss them at the (lower)
qualitative level. In fact, one of the best arguments for pre­
senting calculus at level 2 is to ensure that the trainee can do
it.

What of the job relevance of this course (aside from licens­
ing requirements)? Continuing with the example of control room
operator, let one concede at the outset that the operator will
probably never be required to differentiate or integrate a func­
tion in the control room. Neither will he be required to recite
Science Fundamentals nor even Eguipment & Systems Principles.
ALL of this training provides the operator with the conceptual
framework and background knowledge necessary to 'evaluate the

- 3



221. 00-2

board', and make reasoned responses based on such evaluations,
ie, this training is a consequence of implementing philosphy #2
on the previous page~ In the parlance of the training theorist,
calculus skills are "mediating skills" - skills not practised
directly on the job, but facilitating job performance indirectly.

Of two people with similar native abilities examining the
same control panel, the same faulty circuit, the same AECB exami­
nation, the same design manual, etc, the one with the richer web
of relevant concepts and more extensive relevant knowledge in his
background will, on the average, absorb what he sees faster, and
analyze, apply, or synthesize the input more readily, because his
brain has more reference data, more familiar stimuli with which
to associate the new stimulus. In short, the richer one's rele­
vant background, the higher is his potential job performance.
Note the key word "relevant" in the foregoing - this argument
cannot be used to justify NGD training courses in Babylonian
architecture or ancient Near-Eastern literature, but it does vin­
dicate introducing a control room operator, who interacts inti­
mately with CANDU technology, to the mathematics which enables a
quantitative description of that technology.

The foregoing argues generally in favour of level 2 calcu­
lus; the following are two specific examples of where Mathematics
221 content impinges on control room operation:

(a) Understanding the significance of linear power, log
power, linear rate power and rate log power (cf
Appendix 2), and:

(b) Interpretation of graphical representations of various
physical parameters.

This brief apologetic concludes with a few comments on the
following red herring: If I'll forget how to differentiate and in­
tegrate within days of writing the check-out, so why study calcu­
lus at all?" To begin with, memory-fade is a universal fact of
life, true for all courses. If it were a legitimate basis for
abolishing this course, it would be an equally legitimate basis
for abolishing most courses. But it is not a legitimate basis
for abilishing any course, because there is a useful residual to
instruction/learning, which exists apart from the specific de­
tailS of mathematics, history, literature, science, etc. This
residual of one's general education consists of such things as
the facility of critical analysis and an appreciation of the sig­
nificance of the terms "objective" and "subjective". This resid­
ual remains long after the student's memory of specific details
is all smudge and blur.

The useful residual of this course is envisaged to be con­
cepts of function, rate of change (curve slope, derivative), and
summation (area, integral), plus an ability to think quantita­
tively about time-dependent quantities, an ability which depends
largely on exposure to the mathematics introduced in this text.

- 4 - L.C. Haacke



Mathematics - Course 421

STANDARD NOTATION

Introduction to Powers of 10

A power of 10 consists of the base 10 raised to some
exponent:

10n+---exponent }
~base

IOn stands for n factors of 10.

power

For example,

10 5 = 10 x 10 x lOx 10 x 10

Definitions:r- ~

1

10D

10 0 = 1

Thus: i •
10' = 1000
10' = 100
10' = 10
10 0 = 1
10-'= .1
10- 2 == .01
10- 3 == .001

Powers of 10 are multiplied according to the format,

lIon x lOrn = 10n+m l,
since (n factors of 10) x (rn factors of 10) = (rn+nl factors of 10.

Powers of 10 are divided according to the format,

= lOn-m

August 1978



Example 4: = 10 '-(-5) =

Example 5: 105 X 10- 7 X 10 3

10- 11 X 10 3

105 +(-7)+3

10- 11 + 3

Combining Powers of 10 with Decimal Coefficients

A power of 10 can be combined with a decimal coefficient,

eg, 4.1 x

!
coefficient

la'
t
power of 10

Recall that shifting the decimal point left one place
deCreases a number by a factor of 10. Thus the decimal may
be shifted left n places in a number if it is multiplied by
IOn to compensate.

eg, 4=.~xIOl

=;.~xl02

etc.

Similarly, shifting the decimal point right one place
increases a number by a factor of 10. Thus the decimal may be
shifted right n places if the number is multiplied by lO-n to
compensate.

- 2 -



= 4~. x 10- 2

= 4~. X 10- 3

etc.

Example 1: 5280 = 5.~ x 10 3

Example 2: 0.0043 = 4.3 x 10- 3
~

Example 3 : 65.4 x 10' = 6.54 x 10' x 10
'"= 6.54 x 10 3

(1 move left~ 1 additional factor of 10
~ exponent increases by 1)

Example 4: 0.0571 X 10- 6 = 5.71 X 10- 6 x 10-'
--'"

(2 moves right ~ exponent decreases by 2)

Standard Notation

To express a number in standard notation (S.N.) rewrite
the number with one nonzero digit left of the decimal point,
and multiply by a power of 10 to compensate.

Example 1:

Example 2:

Distance travelled by light in one year, ie, one
light year is

9,460,000,000,000,000 = 9.46 x 1015 meters

Fission cross section of U23S nucleus, for
thermal neutrons is

0.000,000,000,000,000,000,000,58 = 5.8 x 10- 22 cm2

Example 3: 613 x 10' = 6.13 x 10'

Advantages of Standard Notation

(1) Convenient notation for very large or very small numbers
(cf Examples land 2 above), for both ease of writing
and ease of comparison.

- 3 -



(2) :F'Cl_cilitates rapid mental calculation.

(3) Shows number of significant figures explicitly, where
ambiguity might exist in ordinary decimal notation
(cf lesson 421.10-2).

The Four Basic Operations with Numbers in Standard Notation

1. Add numbers in standard notation according to the format,

a x IOn + b x IOn = (a + bl x lOn j

Note that both numbers must have the same power of 10, and
that the power of 10 does not change in the addition
(similarly for subtraction).

Example 1: 2 x 10 3 + 3 X 10 3 = (2 + 3) x 10 3

= 5 X 10 3

?x<..lrnple 2: 4.73 x 10- 5 + 2.18 X 10- 5 ::::: 6.91 X 10- 5

~~~Rlc 2: G.~J x 10 8 + 4.51 X 10 6

(convert to same powers)

= 6.98 x 10e (Sum justified to 2 D.P.)

~amvle 4~ 9.78 x 10 12 + 5.14 X lOll

= 9.78 X 10 12 + .514 x 10 12 (convert to same powers}

__ 10.29 X 10 12

= 1.029 X 10 13

(Sum justified to 2 D.P.)

(Adjust decimal, power to recover
answer in S.N.)

- 4 -

2. Subtract nu~bers in standard notation according to the format,



421.10-4

Example 2: 4.65 x 10- 8 _ 9.24 X 10- 10

= 4.65 X 10- 8
- 0.0924 x 10- 8 (convert to

s arne powers}

= 4.56 x 10- 8 (difference justified to 2 D.P.l

Example 3: 6.25 x 10 12 - 11.3 X 10 13

= 0.625 X 10 13
- 11.3 x 10 13 (convert to same

powers)

= -10,7 X 101:"1 (difference justified to 1 D.P,)

= -1.07 X 10 1
1+ (adjust decimal, power to

recover answer in S.N.)

3. MUltiply two numbers in standard notation according to
to the format,

Example 1: 2 x 10 6
X 3 X 10 2 = (2 x 3) x 10 6 + 2

= 6 x 10'

Example 2: 4.7 x 10 6
X 6.2 X 10- 3

= 29 X 10 3 (product justified to 2 S.F.I

= 2.9 X 10 4 (express answer in S.N,)

4. Divide two numbers in standard notation according to
the format,

Example 1: (7 x 10' ) T (2 x 10-2 ) = (7 T 2) x 10'-(-2)

= 3.5 x 10'

- 5 -



Example 2: 2.4 X 10 5 + 6.9 X 10 9

= 0.35 X 10-4 (quotient justified to 2 S.F.}

= 3.5 X 10- 5 (express answer in S.N.)

Evaluating Complex Expressions Using Numbers in Standard Notation

(ll Do operations in established order of precedence (cf
lesson 421.10-1).

(2) Retain one more D.P. or S.F. than justified in interme­
diate calculations (to avoid introducing unnecessary
'rounding-off error') .

(3) Round off final answer to correct number of digits
justified.

~xample 1: 2.2 x 10 2 • (8.1 X 10 4 ) + 1.7 X 10- 6 X 4.6 X 10 3

= 0.272 X 10- 2 + 7.82 X 10- 3 (+, x precede +; retain
3 S.F. temporarily)

= 2.72 x 10- 3 + 7.82 X 10- 3 (convert to same power)

= 10.54 x 10- 3 (last digit not significant)

= 1.05 x 10- 2 (answer in S.N.)

Example 2: Recall that division bar acts as a bracket, requiring
evaluation of numerator and denominator prior to
division, as follows:

4.7 X 10' + 2.1 x 10 '

6.8 X lOll x 1.4 x 10-~

.47 x 10 ' + 2.1 x 10' (convert to in~ same powers
6.8 x 1.4 x 101 1 + (- ,) numerator)

~

~

2.57 x 10 ' (retain extra digit temporarily)
9.52 x 10'

0.27 X 10' (answer justified to 2 S. F.J

2.7 x 10 ' (answer in S.N .)

- 6 -



ASSIGNMENT

421,10-4

l. Evaluate: (a) 10' x 10" = (b) 10 ' • 10' =T

(e) 10' x 10-'= (d) 10' • 10-' =T

(e) 10-' 10- 4 (f) 10 I 1 . 10 20 =X = T

(g) 10' 10-a
lliL 10' · 10 ' =x = T

2 . Change to a simpler form:

(al 1 (b)
1= =

10' 10 ' X 10'

(ol 1 (d) 1= =
1Q-2 10-' x 10'

(e)
1

(f)
1- -- = =

10' 10- 1 )

(g) 10' X 10'
(h)

10- 17 x lOll]
= =

10' 10 20
X 10- 5

(i)
10- 1 1X 10 12

(j 1 10 21
X 10- 19

= =
10- 8 10' X 10' X 10'

(k)
10' (1)

_10 2 x 10 ' x 101 7
= =

10- 12
X 10' 10' x 101 7

3. Rewrite the following in decimal form:

al 10 2

e) 10'

e) 10'

b) 10-'

d) 10-'

f) 10-'

- 7 -
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4. Convert the following to standard notation:

(al 165 000 (bl .00693

(el 37.5 (d) .025

(el 2934 (f) .00101

(g) 10000 (h) .00020

(i) -249 (j) .97

(k) 176 x 10- 3 (1) .0027 x 10 3

(m) 957 x 10' (n) .0175 x 10- 12

(0) .024 x 10' (p) .032 X 10 14

5. Calculate the following:

(al 9.3 x 10' + 1.5 x 10 ' =

(b) 4.6 x 10 12. + 9.9 X lOll =

(e) 9.4 x 10 12. - 1.2 X 10 1 .. =

(d) 7.5 x 10' - 5.0 x 10 ' =

(e) 4.5 x 10 12. - 4.5 x 10' =

6 • Express answers in scientific notation:

( al 3.7 x 10' x 2.5 X 10' =

(b) 2.5 x 10' . 3.6 x 10 ' =

( c) 9.7 x 10 12 x 3.3 X 10 1 (\
=

9.5 x 101 5

(d)
3.2 x 101 3 x 2.2 X 10- 12

=
1.3 x 10 10 x 9.9 X 10'

(e) 2.8 X 10- 12 x 1.1 x 10 1 1
=

8.0 x 10 3
X 7.0 X 10- 8



7. Express answers in scientific notation.

421.10-4

(a) 7.5 X 10 2 + 5.0 X 10 3 X 2.0 X 10- 1

2.5 X 10 2 x 3.0 x 10
=

(b) (8.6 x 10-1~ + 9.9 X 10- 13 ) x 2.0 X 10 12 =

4.6 X 10 3 x 5.0

L. Haacke
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Mathematics - Course 421

ALGEBRA FUNDAMENTALS

I Introduction

Basic operations in algebra are the same as they are
in arithmetic, except that letters are used to stand for
numbers. This gives the advantage that one can manipulate
numbers without knowing their values. As will be seen in
lesson 421.20-2, this advantage is useful in setting up
and solving proportions, manipulating formulas, and
solving problems in one unknown.

II Evaluation of Algebraic Expressions by Substitution

To evaluate an algebraic expression by substitution,
substitute the given numerical values for the variables
(letters), and then simplify using "BEDMAS II for correct
order of operations (af lesson 421.10-1, section V).

Example 1:

Evaluate a + 3b if a = 5 and b = -2.

Solution:

a + 3b = 5 + 3(-2)

= 5 + (-6)

= -1

(substitute)

(x precedes +)

Example 2 :

Evaluate (x + y) 7 (x) (y) if x = 7, y = -4.

Solution:

(x + y) (x) (y) = (7 + (-4)1 ~ ( 7) (- 4)

= ( 3) 7 (-4)

3= (7) (-4)

= (i) (=-f)
-12= --or;

= -1-
7

February 1979

(substitute)

(brackets first:

U I x as they
occur)
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III Powers

a) Notation

Recall that an stands for nfactors of a;

n factors of a

eg,

Note the use of the dot to indicate multiplication, in
order to avoid confusion of the times sign "x" with
the letter !Ix". Sometimes brackets are us,ed to
indicate mUltiplication.

eg, 3x(-y) means 3 times x times -y, but
3x~y means 3 times x, subtract y.

Most often, however, when variables are multiplying
each other, the sign is omitted altogether.

eg, -3xy means -3 times x times y.

A power consists of a base and an exponent:

an' exponent)
'" power

'''---base

** NB Exponentiation (raising a base to an exponent)
takes precedence over mUltiplication and division.

eg, xy' = xyy (y must be squared before
mUltiplying by xl

- 2 -

But this natura~ order of preced~nce can be overruled
with the use of brackets:
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ng, Xy2 = xyy , but (xy) 2. = (xy) (xy)

Ag. -2x 2 -- -2xx, but (-2x) 2. = (-2x) (-2x)

eg. _10' = - (10) (10), but (-10)' = (-10) (-10)

b} Power: Laws

Nine basic laws governing operations with
exponents follow. A brief rationale and one or
more examples are included with each law.

La", 1-:

Rationale:

{n factors of x) tm factas of x) = (m + n) factors of x

Example:

Lay.. 2:

n . m} Ix " x n - m
x

n = x
or xm

Rat:ionale:

a) If n > ro, cancelling m common factors of x leaves
n - m factors of x in the numerator.

b) If n < ro, cancelling n common factors of x leaves
m - n factors of x in the donominator.

ie, 1 -em - n) n - m= x = xn
(ef law 4)

- 3 -



Examples:

J
aJQOunts to
caneelling 5
factors of x
in ~ ther case

** NB
be

In laws 1 and 2, the bi!!-ses of the powers must
iClentical

ie, .cannot. be simplified
as a power

2'
Similarly l

2'

L;:1W 3:

= 22. , but 2'-
3'

cannot. be simplifiaA
as a power '

Rationale:

- 4 -

m factors of (n factors of x)= Inn factors of x

Exampl~:

Law 4:

_TIl 1x = mx

1 mor = x-mx

Rationale:

a!;3qati'}e e;..:ponents are defined this way to make the
oc:.her l~l''-: _ ·~·_!!.s.,.,·,t,~,,,,t.<



eg, a' =
as

fP 1ji"'a"a = ilz

421. 20-1

But law 2 gives a' =;S a 3 - S -2= a

1These are consistent only if = a- 2

a 2

Examples:

x-5 = 1
X

S

Thus powers may be shifted from numerator to
denominator, and vice versa, merely by changing
the sign of their exponents.

Law 5:

Rationale:

XO by law 2

n
But x 1=n

x

• x" 1=

Eamples:

10" = 1

(-13) " = 1

(xy) " = 1

by cancelling numerator and denominator

to make answers consistent

- 5 -



Law 6~

mm- x y

Rationale:

m factors of xy = (m factors of xl (m factors of y)
just by reord~ring the XiS and y~s.

Examples:

(xy) 5 = XSyS

(_p) 5 = (-1 x pl 5 = (-1) 5 p5 = -p'

(x.'2 y ) 5 = (XZ) 5 ;.5 = X.1° y 5

(2y 3) ;j = 2 S (y'j8 = 256 y24

La.w 7:

(x ~ y)m m + m= x y

(~)
m xm

or = -y my

xof =
Y

r.t factors
m factors

of x
of y

by rule for multiplication of fractions.

- 6 -

Example~. :

a. /
( ._)
n

,
c'
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2>:)
, (=?) , (-2>:) , (-2) 3 x a -8x~

(- ~ = = = ---r"J1 3' 3'

2>:)
,

«-1) ~>:)
,

(-1)' (¥l ,
(-1) (2x)' 8x'or (- = = = = - Tlr 3'

Law 8:

I
1-

x n = ~
-

By law 3,

Rationale:
1 .!!

(an) n ;;:;I an

1

Thus n factors of an equals a.

Bu~, by definition, ~ is that number, n

f~ctors of which equals a

•
1
na =

Examples:

1
h8 3 = = 2

1

(-125) 3 = hE = -5

1 1 1

(27):') 3"
- -

= 27 3 (x·)3 = m x' = 3x'

Lal·r 9 :

"n = H = ( rx )m
X

- 7 -



'Rativnale.-:

1lI 1
n (.x1D,J n (law 3)" =

= .R (law ,B')

m 1

But XU = ,,,0) .. (law ~)

= ( !Ix ).Ill ,t1;a.w ,8)

2

=

or =

.,
(-32x") =

j

f-32r",y5 =

3 4

b3~lStxl"J''5 = ,(~ ,.t,

_= (-2) 3 X " -= -ax,1>

c) Additional EX3.ID.pllds o-fUse c-r Pow.er -~s

Example 1.

(3v"Z-' :",0. -. 1- ._--~",-,._~--

,- '8 -

=
33X3,V:t.)~'.. ' (law 6 onnume:r.ator:)

(cf-Jrl\ple-te e~'{ponentiation, la'.... J)



Example 2:

(-x)' (-x')
-,

(-x) (-x-')

Example 3:

1 - 4
(- 32) •

1 -'I'= (=TI)

-'I'
= 1

(_32)-'/'

1
= (_32)-'/'

= (-32) 'I'

421. 20-1

(apply law 2 to XIS, y's
separately)

(show _x 2 as (_1)x 2 to separate
numerical coefficient (-1) from
base x)

(law 2 for each base)

(even no. negative factors
yields positive result)

(law 1)

(law 7)

(Ix = 1 for any x value)

(law 4)

- 9 -



~-32
2 (law 9)= ( )

= (-2) , ( ~-32 = -2 since (-2) 5 = -3;2')

= 4

IV The Four Basic Operations with Algebraic ~ermB

a) Definitions:

An algebraic term is a group of numbers and/or
letters associated by multiplication or division
only, and separated from other terms by add.ition or
subtraction,

eg, 3x z , -Sxy, 16, xypg are terms

Like terms are terms having iclentic,al letter
combinations, including exponents,

eg, x, 3x, -17x and

xy2, 5xy 2, -4xy 2 are groups of like terms,

but 5xy and - 4xy 2 are not like terms since

the exponent on y differs.

The nume~icaZ coefficient of a term is the
number which mUltiplies the letter combination,

eg, 3xy, 7fq2,
t t
numerical

-15tsw
t

coefficients

b) Addition and SUbtraction of Terms

Like terms ONLY are added/subtracted by adding!
subtracting their numerical coefficients. The process,
of adding/subtracting like terms to simplify an
algebraic expression is called eo ZZeC!td,ng terms.

Example 1:

(Note that letter
combination does
not change)'

- 10 -
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Example 2:

-15yp' + 9yp' = (-15 + 9)yp'

Example 3:

5qr - 3qr = (5 - 3)qr

= 2qr

Example 4:

-15x'y - 2x'y = (-15 - 2)x'y

= -17x 2 y

Example 5:

Simplify -lSx 2 + 4xy _ y2 + 2x 2 _ 3y 2

solution:

-15x 2 + 4xy _ y2 + 2x 2 _ 3y 2

= (-15 + 2)x' + 4xy + (-1 + (-3) )y'

= -13x 2 + 4xy - 4y 2

c) Multiplication and Division of Terms:

(collect like
terms)

Terms are multiplied/divided by multiplying/
dividing first the numerical coefficients, then each
group of like powers (same bases) successively.

Example 1:

(5x'y) (1.3xy'J

= (5 x 1.3) (x' x) (y y')

Example 2:

(-4pq') (-3qr')

= (-4 x (-3» (p) (q' q) (r')

= 12pq'r'

(group like powers)

- 11 -



Example 3:

(15x') 7 (3x')

== 5x~

Example 4:

(Imagine factors of rO = 1 in the numerator,
1 in the denominator if this h€lps.)

and

V Multiplication and Division of Polynomials

Definitions:

Monomials~ binomials and polynomials are algebraic
expressions having one, two and several terms) respectively.

a) Multiplying Binomials by Monomials

Multiply each term of the binomial by the monomial,.

Example 1:

terms
fu..:' + t) = ab + ac
j""""'-

Monomial ~Binomial

Example 2:

- 12 -

5x(2x - y)

= 5x(2x + (-y))

= 5x(2x) + 5x(-y)

= lOx' + (-5xy)

= lOx£ - 5xy

(Optional step~ express b~nomial as
sum of 2 terms.)
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b) Multiplying Two Binomials

Multiply each term of second binomial by each
term of the first binomial.

Example 1:

(a + b) (0 + d) = ao + ad + bo + bd

Example 2,

(2x + y) (x - 5y)

= 2x(x) + 2x(-5y) + y(x) + y(-5y)

= 2x2 - lOxy + xy _Sy2

(collect terms in xy)

c} Dividing Binomials by Monomials

Divide each term of the binomial by the monomial.

Example 1:

12x 2 + 4xy
2x

= 12x
2

+ ~XxY
2X

= 6x + 2y

Example 2:

2xy

= _[lOX' _
2xy

= _(5x _ ~)
y X

(problem reduces to dividing
termst

Note that minus sign in
front of quotient applies
to entire expression,
hence the brackets

- 13 -



d) Generalizations to polynomials

To multiply two polynomials, rnu1t:ip,:LY e'acht:;errtt:
of the -first by each and every term of the- secant!.:'
polynomial.

To divide a polynomial by a monomial', dividE§,
each term of the polynomial by the monomial.

VI Simplification of Algebraic Expressions

The order of operations, "BEDMAS" (see 421.10-1, V),
holds for simplifying algebraic expressions just as fO±
arithmetic expressions. The following examples illustra-t'e
the preceding rules for operations on powers, terms, and'
polynomials.

Example:

Simplify the following:

(b) aba + aab

(c)

( d)

4x - 7y -

abc - abc

(3x - 4y) + x + 3y

(-2) (- .!o) (-3)
2

(e)
-Gab - 12a2

-3a
3b 2

- Gab
-3b

- 14 _

Solutions:

(a) x' x + x' x' + x

~ x + x + x

~ 3x

(b) aba + aab

= aab + aab

= a'b + a'b

= 2a 2 b

(+ precedes +)

(collect terms)

(order o~ a's, bls
does not aff'ect
value of product)

(collect terms)
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(c) 4x - 7y - (3x - 4y) + x + 3y

= 4x - 7y - 3x + 4y + x + 3y (remove brackets
preceded by minus
sign by changing
sign of all en-
closed terms)

= (4 - 3 + l)x + (-7 + 4 + 3) Y (collect like terms)

= 2x

(d) abc abc (-2) (- I- '2" ) (-3)

= abc - abc (-3) (3 negative factors
(odd no.) give
negative product)

= abc + 3abc (to subtract, add
the opposite)

= 4abc

(e) -6ab - 12a 2 3b' - 6ab
-3a -3b

-6ab -12a 2
(3b' + -6ab (Express binomials

~ -+ -3b )-3a -3a -3b as sum of 2 terms)

= 2b + 4a - (-b + 2a)

= 2b + 4a + b - 2a (remove brackets)

= 2a + 3b (collect terms

NB Brackets preceded by a "+" may be inserted
or removed without altering enclosed terms,
but brackets preceded by a ,,_It may be
inserted or removed only by altering signs
of all terms enclosed.

- 15 '



Assignment

1. Ifa = 12, b ::= 2 and e = -3, evaluate the following:

(a) -a + 5b + eb
"6 a

(b) a + 2a - 3e'

(e) 6b' - a - b 2 + e

2. Simplify

(a) al+a 6 (b) }a(}a.') (~')

(e) b 3b li b s (d) 3 x 3 2
X 3 li

(e) m7 ·ml+ ~ m' ( f) a' ~ a- S ·a 8

(g)
a' a

(h) b 6 b li
-

a' a' b'

(i) (a 7) 2 (j) (_3a2 ) ,

(k) (! x') , (1) ra fa2
1

(m) ~ (n) (_ 3xy2) 2

2

(0) X 6 X- 2 X- li (p) ( IX 1
y'

3. Evaluate:

(a) 3 . (J • 13' (b) (}) 2·' (e) (16)-0.25

(d) (~~ -, (e) (_3)-' ( f) 36 ' / 2

(g) (- ~2)
-1/5

(_8)'/' (_ ~~) -2/'(h) (i)

- 16 -
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4. Write each expression without negative or zero exponents
and simplify.

(a)

(e)

3a o _ b O

a' + (3b)'

_{_3ao.lt b O .. 6 }5

(b)

(d)

(16 x l6 ) 1/'

5. The mass of an electron is 0.00055 a.m.u. and 1 a.m.u.
is 1.66 x 10- 24 g. Calculate the mass of the electron
in grams.

6. It requires 3.1 x 10 10 fissions per second to produce 1
watt of energy. How many fissions per second are
required to produce 200 Megawatts.

7. Simplify:

(a) 2a + 3a + 6a

(bl Sx 2 + 2x + 3 + 5xy + 4x + 2 + x 2

(e) 5x + 12y + 20x + By

(d) 2c + Sa + 60 + 2b + 3b + 4c

(el 3j + k - 4j + 11k 7k - j

( f) a + a+a+a- Sa + 11a

(g) x + 3xy 2 + 2x + y - 3x + y'x

(h) X 2 y 3 + 3X2 y 3 + 1 - x

(i) x + y + z - 2y + 3z - 6x

- 17 •



8. Simplify:

(a) -~f (b) 7x
"ITXy

(e) 15ab (d) ~3a - 5pg

(e) -2x 2
(f) -27ab 2 c

-2x 9b

(g) §L (h) X;YZ
3x yz

(i) (6x'y) (-4y'p) (j) (-llpq) (-2ps't)

9 • Simplify:

(a) (x + 4y) (x - 8y) (b) (3x + 2) (5x + 4)

( e) (3a - 2e) (4a - 5e) (d) (x' - y) (y + X
2

)

(e) 6x' - 2x 9x - 3 ( f) 4x + lOy
--2x -3 2

(g) -lOa 2 - 5 -3a 2 _ 6 (h) ax 2 + lOx
-5 -3 2x

(i) 3x 2 - 15x 12x - 18 (j) 14x 2 + 21x Jx2 + 9x
3x -6 7x j

10. Simplify:

(a) (8mn) (4mx)

(b) (9abe) (-4bed)

(e) -3y (6m - 5t)

(d) 5(4h - 6k)

(e) -3(x + y) + 10(2x - 3y) + 5(2y - 3x)

( f) 2x(x + y) - (x' + xy) + (x - x)

( g) 8e + 3k - (5e + 2k)

- 18 -



10. Cont'd

(h) 2b - e + (Be - 4b) + b

(i) 3a - 5x - (4a + x) - 2a

(j) ab + ab' , b

(k) xy + X 2 y 2 , xy

L. Haacke

421. 20-1
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Mathematics - Course 421

GRAPHS

I Uses of Graphs

Graphs are used to

(1) display the relationship between 2 or more variables
(2) summarize data pictorially for easy assimilation.

II Rectangular Co-ordinate System

A reatanguZar ao-ordinate system is set up by drawing
two mutually perpendicular lines (axes) which intersect at
the origin~ O. The vertical axis is usually called the y­
axis; its upward branch is labelled "y " to indicate that y
increases vertically upwards. The horizontal axis is
usually called the x-axis; its rightward branch is labelled
"Xii to indicate that x increases horizontally rightward.
The axes divide the xy-pZane into four quadrants~ as in
Figure 1.

A uniform scale of length units is marked on each
axis, starting from O. The position of a point in the
plane is specified by its distance from the y-axis (the
x ao-ordinate or absaissa) and its distance from the x­
axis (the y ao-ordinate or ordinate). For example the
point P(2, 3), with x co-ordinate 2 and yeo-ordinate 3,
is located in the plane at the intersection of perpendiculars
erected to the x-axis, 2 units from 0, and to the y-axis,
3 units from 0 (see Figure 2).

y
Abscissa

2 ------n p
{2,3)

: Ordinate
I
I

y

Quadrant 2 Quadrant 1

Quadrant 3 Quadrant 4
-2

Figure 1

August 1978

Figure 2
- 1 -



The tedious process of constructing perpendiculars is
usually eliminated by the use of squared papBP.

III Data Graphs

Steps to Plotting a Data Graph

Step 1:

Select a piece of graph paper of suitable dimensions
and size of grid squares to display data.

Step 2;

Select the independent variable (the one deliberately
varied in an experiment) to be displayed horizontally and
the dependent variable (the one which responds to changes
in the independent variable) to be displayed vertically.
For example, temperature would normally be plotted vertically
on a temperature - time graph. Note, however, that choice
of variable to be displayed vertically is often a matter of
personal judgement or convenience - eg, graph of voltage VB
current, where either variable could be independent.

Step 3:

Choose display ranges and scales
about two-thirds or more of available
axis. Draw axis and mark on scales.

Step 4:

~ spread data over
space along either

Label axes with respective quantities and units there-
of.

Step 5:

Plot data.
such as circling

Step 6:

Make data
them.

points visible by some method

- 2 -

Indicate the pattern or trend of the data by

(a) joining successive data points by straight line
segments to produce a LINE GRAPH, if the data does
not obey a simple relationship, or

(b) drawing a smooth averaging CURVE through the data
("curve" here includes the case of the straight line),
if the data does obey a simple law.

Step 7:

Place a suitable title on the graph.
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Examplel :' Hos)?i'ta:l' 'p'at:i'e'nt" S' T'empe'r'a'ture' Chart

The following table indicates a patient's temperature
readings taken at 6-hour intervals May 1 to 3 inclusive.
Plot a temperature-time graph for the patient.

Day May 1 May 2 May 3

Time
0000 0600 1200 1800 0000 ·0600 1200 1800 0000 0600 1200 1800

(hr)

Temp
37.6 37.3 37.1 36.9 36.9 36.9 37.1 38.9 38.1 37.2 36.9 36.9(DC)

Note that all the above temperature readings lie
between 36.9° and 3B.9°C. The above data have been
plotted in Figure 3, using an unsuitable temperature
display range of 0° to 40°C, and again in Figure 4
using a temperature display range of 36.8° to 39.0 o C.
Figure 4 is obviously much easier to read and inter­
pret than Figure 3. This contrast between Figures 3
and 4 illustrates the importance of choosing a suitable
scale and display range (step 3 above).

Note that a tine gpaph has been produced (step 6
above), since there is no simple law relating a patient's
temperature with time.

- 3 -



FiSLure 3: HOSPITAL PATIENT'S TEMPERATURE.C!!AIl'i'
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Example 2: Average Weight VB Age of Teenage Boys

The following table gives the weights of boys of
various ages. Draw a graph to illustrate this variation.
From the graph, find the average weight of (a) a 12~ year
old boy (b) a 16 year old boy.

Age 10 11 12 13 14 15(years)

Weight 34.7 36.3 38.6 41. 7 45.8 51. 7(kg)

A step-by-step solution is given for this example:

Step 1:

Graph paper with one millimeter squares is suitable
for this application.

Step 2:

Weight will be plotted vertically and age horizontally.
(Weight is responding to age, not age to weight.)

Step 3:

y-axis: weights from 34 to 60 kg, at scale 2 kg = lem

x axis: ages 10 to 16 years at scale 1 year = 2 em.

Steps 4 and 5:

See Figure 5 for axis labels, data plot.

Step 6:

Since there is an obvious relationship between average
weight and age of boys 10 to 15 years old, a smooth curve
is drawn through the data.

Step 7:

See Figure 5 for title.

- 5 -
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The curve drawn in Figure 5 represents the relation­
ship between average weight and age of boys of all ages
from 10 to 15 years, inclusive. Thus the average weight
of a 12~ year old boy, from Figure 5, is 40.1 kg. This
is an example of INTERPOLATION - estimating values of
variables between given data points.

By assuming that the trend of the relationship con­
tinues to age 16 years, one can estimate the average
weight of a 16 year old boy. As seen from Figure 5, this
weight is 60.0 kg. This is an example of EXTRAPOLATION ­
estimating values of variables outside of the range of
the given data.

Note that interpolation gives more reliable estimates
than extrapolation because the former is guided by given
data on both sides of the estimate, whereas the latter is
guided by data on one side only of the estimate, and the
assumption that the trend of the data continues as far as
the estimated value.

Example 3: Load - Effort Relationship for a Machine

The following table contains experimentally deter­
mined values of the effort required to move various loads,
using a certain machine. Draw a graph to show the load­
effort relationship.

Load ,
30 40

(kg)
60 70 80,

Effort 2.13 2.6 3.8 4.3 5.1
(kg) ,

The required graph is shown in Figure 6. Note that
the curve best fitting the data in this example is a
straight line. The curve itself represents an estimate
of the true relationship between load and effort. The
various data points lie slightly above or below the
curve simply because of the uncertainty inherent in the
experimental measurements.

When the curve best fitting data is deemed to be a
straight line, as in this example, the relationship
between the variables is said to be linear (noun "line";
adjective "linear").
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Figure 5: AVERAGE WEIGHT vs. AGE FOR TEENAGE BOYS
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ASSIGNMENT

1. Ploc, the following poin~s:

(a) P(3,4)
(b) 0(-2.4)
(0) R(-5,-4)
(<1) S(4,-2)
(e) T(15,10)
(f) U(-3,8)

.2.. The -following t.:illie shews the temperature at two-hourly
ilit:ervals for on.:: dav'. Ploe 'a graph to illustrate this
va'r'tation in temperatur,;:.

11..... 2am 4 6 8 10 Noon 2pm 4 & tl 10 12<
,.

Temp 9 8 9 12 14 18 23 26 22 20 16 14. (OC)

3. The following ~abl~ giv~s the current, I, in a circuit, for
various values of the re5ist:=.nc~, R I \l1hen the voltage remai.na
constant.

,
R(ohms) 2 4 8 12 16 20 40 60

I (amperes) 60 30
I

15 10 7.5 6 3 2

Plot a graph shO\-iing no'.; 1:he current: varies with the
resistance and estimate

Cal The current when R = 10 ohms and
(b) The resistance required to give a current of 50 ampere~~

4. The pressure, P, a~ different depths, h, in a liquid is
fo.und to be as follows:

h(cm) i 'J I 10 : 2() 30 35

P (kPa) I 103 1251 ; 419 1577 656

Plot the graph and from the graph estimate:

(a) The pressure at a depth of 50 ern.
(b) The depth at which ~he pressure is 300 kPa.

L. Haacke
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GRAPHING FUNCTIONS

I Introduction to Functions

Definition:

One variable is a funation of another variable if a
unique value of the first variable corresponds to each
value of the other, ie, if the two variables are related
by some formula (loosely speaking) .

Notation:

The notation f(x) , A(r), P(T), etc is used to denote
f as a function of x, A as a function of r, p as a function
of T, etc.

Example 1:

The area A of a circle is a function of its radius r
according to the formula,

(read "A at r equals lTr
21l

)

ie, a definite value of A corresponds to each value of r

eg, A (1) ; rr(l)' ; 3.14

A(S) ; rr(S)' ; 78.5

1'(0.1) ; rr(O.l)' ; 0.0314·

etc.

Example 2 :

f (x) ; x' - 5x (read "f at x equals x' - 5xll
)

Here f is a function of x since the formula gives a
unique value of f for each value of x

eg, f(O) ; 0' - 5 (0) ; 0

f(l) ; l' 5 (1) ; -4

f(-2) ; (-2) , - 5 (-2) ; 2

etc.

- 1 -
August 1978



Functions of Several Variables:

If G is a function of n variables, Xl' X2, •.. , Xn)
one writes

G{Xl, X2, ••• , Xn)

Example 3:

Cylinder volume V is a function of both height hand
radius r, according to the formula,

ie, each pair of rand h gives a unique volume

eg, V(l, 1) = ~(l)2 (1) = 3.14

V(2, 5) = ~(2)2 (5) = 62.8

etc.

Dependent and Independent Variables:

The independent variable is the one to which values
are assigned arbitrarily, and the dependent variable is
the one given by the formula.

eg, dependent variables
., ., .,
A(rl , f (x) , G (x 1, X2' ... , X

n
)

t t t t t

independent variables

II Graphing Functions

usually the independent variable is plotted along the
x-axis (horizontally) and the dependent variable along the
y-axis (vertically) - cf 421.40-1, part III.

The steps to graphing a function are similar to those
outlined in § 221.40-1, part III for data graphs, with
the following notable differences:

(1' The table of values must be calculated, using the
function relationship.

(2) The plotted points are always joined by a sm?oth
curve {except for discontinuous functions, wh~
are beyond the scope of this text}.

- 2 -

(3) . The curve is labelled with the equation which it
represents.
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Example 1:

Plot a graph showing circle area A as a function of
radius r in meters, O~r~4.

Solution:

Use A(r) = nr 2 to generate a table of values.

r meters 0 1 2 3 4

A(r) meters 2 0 3.1 12.6 28.3 50.3

Graph of Circle Area vs Radius

60

40

A(r) = rrr 2

20

01"'-'''''-------'----
2 4 r (meters)

Roots of an Equation:

The roots of any equation of the form f(x) = 0 are
the x values which satisfy this equation (make it true).
Clearly, the x-coordinates of the x-intercepts of the
curve y ~ f(x) are the roots of f(x) = 0, as illustrated
bl:);loN:

- 3 -
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f(x)

x

Xlr X2 ar~ ~h~ ~aOt~ off(x) ~ a

EXCi.llIplt:: 2:

Graph th!;:;l f(J.nc-cion f(x:) ~ x~ - 5x dond find tht:: roots
of x 3

- 5x == 0 from thl;::! graph.

Solution:

Li;t y == f (x), and u:::;e y = x:l - 5x to gent:!riite a tabl,e
of valu~s

1=iliJ
:0::1 :0:1 .. 5 ±J :!:2.S d I . I" j
:;:4 +4.1 :;~ ±3.1 ± 12 I±44
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y

40
y = x 3 _ 5x

20

-4

(-2.2, 0)

(0 ,0)

-2

-40

(2.2, 0)

2 4

Roots of x 3
- 5x = 0 are x = ±2.2 and x = 0

ASSIGNMENT

1. Express each of the following statements in functional
notation, and give the exact formula for the notation:

(a) The circumference C of a circle is a function of
its radius r.

(b) The distance d travelled in time t at a uniform
speed v is a function of t and v.

(c) The total area A of the surface of a right circular
cylinder is a function of its height h and radius r
of its base.

2. Given f(x) = 2x - 3, find f(6), f(O), f(-2).

- 5 -
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3. Given H(x) = x(x - a) (x - 1) find H(Ol. H(ll. H(a.).

4. Find the length d of a diagonal o£ a square as a _functi~

of the perimeter p of the square.

5. Graph the following functions f(x) and find the roots of
fIx) = 0 from the graphs:

(a) 4 _ Xl

(b) x' + 2x + 2

( c) 2 + 9x - x'

(dl x' - x - 6

(e) x' - 3x - 1

L. Haacke

- 6 -
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Mathematics - Course 321

LOGARITHMS AND EXPONENTIALS

I INTRODUCTION

(a) Exponential Functions

DEFINITION:

An exponentiaZ function is a function of the form

rex) = aX, where "all is a real positive constant.

The distinction between the exponential function, aX,
and the more familiar power function, $a, should be clear
from the following example in which a ~ 2:

Example 1:

Plot on the same graph the functions y = 2x and y = x 2

over the domain -4 ~ x ~ 4.

" -4 -3 -2 -1 0 1 2 3 4

2" 1 1 1 1 1 2 4 B 16
IT If "4 2"

,,' 16 9 4 1 0 1 4 9 16

January 1980 - I -
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42

y ~ ",2_ JJ--y ~ :i"

y

o

4

8

16

12

-2-4

Figure 1

Note that the curve y = 2x is asymptotic to the negative
x-axis, ie, the curve approaches ever more closely to the
negative x-axis as the magnitude of x grows, but never actually
reaches the axis for any finite x-value. The curve y = 2-x is
the mirror image in the y-axis of y = 2x , and is asymptoti,c to
the positive x-axis. (Check this.)

Thus, in general, if a > 1, the exponential functions 'ax
and a-x have the characteristic shapes illustrated in Figure 2.

- 2 -
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1
y = aX 1

y

321.10-3

-xy ::::: a

--==::;::~L._-_x

Figure 2

(b) Logarithmic Functions

DEFINITION:

x

The "logarithm of x to the base "a" designated tllogax", is
the exponent to which "a" must be raised to produce x.

That is: logax = y~ aY = x

eg, logg 9 = 2, since 3 2 = 9

eg, 10g 2 64 = 6, since 2 6 = 64

In general, the curve y = logax has the characteristic
shape shown in Figure 3.

y

1
x

- 3 -



The bases 10
and ~nx functions
called:

and e are so commonly used
on scientific calculators.

as to justify log ~

These are the 80-

(1) Common Logarithms, to base 10, and

(2) Natural. Logarithms, to base lie".

(e ~ 2.718281828 ..• )

The rationale behind the special provisions for common loga­
rithms is our use of the decimal system (base 10), while the
rationale for natural logarithms is the fact that exponential
functions (base "e") are abundant in technical applications.

eg: V(t) -tIRe
~ Voe , where Vo ~ initial voltage at t~o

V(t) = voltage at time t
t = time in seconds
R = resistance
C = capacitance

The above definition for logax is restated here specifically
for common and natural logarithms:

DEFINITION:

The common "logarithm of x, designated "lOglQX" (or simply
"log x"), is the exponent to which 10 must be raised to
produce x.

eg, log 1000 = 3, since 10 3 = 1000

eg, log IIO = ~, since 10' = IIO

DEFINITION:

The natural, 'logal'ithm of X.J designated "logex" (or simply
"£.nx n ), is the exponent to which "e" must be raised to
produce x.

eq, ~n re 1
~ 3' since e 1/3 = re

4 -

II USE OF LOGARITHMS IN COMPUTATION OF COMPLEX ARITHMETIC
EXPRESSIONS

Logarithms are used to reduce the operations of mUltipli­
cation, division, and exponentiation to addition, subtraction,
and multiplication, respeclively, according to the following
laws:
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LAW 1, log XY = log X + log Y

LAW 2, log X = log X - log YY

LAW 3, log Xn = n log X

With the introduction of the scientific calculator, the
computation of complex arithmetic expressions has been greatly
simplified. In fact, the use of logarithms in their evaluation
has been rendered virtually obsolete. However, the trainee
should become fully familiar with the laws governing the use
of logarithms as an aid in solving some types of problems
which will be introduced later in this lesson. To this end,
several examples are now presented which illustrate the use
of logarithms in the evaluation of complex arithmetic and
algebraic expressions.

Example 1:

Evaluate V(0.007294) 3

Solution:

(a) Modern calculator technique (use of y X
)

'/(0.007294) 3 = (0.007294)3/5

= (0.007294)°·6

= 0.05221

(b) Use of logarithms (obsolete method)

Let :r: =

then log x =

=

=

=

V(0.007294) 3

log (0.007294)3/5

~ log (0.007294)

3"5 (-2.1370)

-1. 2822

. . log x = -1. 2822

How does one now find the value of x ?

- 5 -



Recall that log x, by definition, is the exponent to which 10
is raised to produce x. Thus,

x = 10-1.2822

(This process of exponentiating to find x is also called taking
the antilogarithm, to base 10, of -1.2822~)

Example 2

Evaluate

solution:

Let x =

(7.236) I;' x (4.36)'

(0.00287) •

(7.236) y, x (4.36)'

(0.00287) •

~
7.236) 1/, x (4.36)8

Then log x = log
(0.00287) •

= log E?236) y, x (4.36)J - 10g(0.00287)'

= log (7.236) y, + 10g(4.36)' - 10g(0.00287)'

- 6 -

=

=

=

log x :::

x =

=

13 log 7.236 + 2 log 4.36 - 4 10g(0.00287)

; (0.8595) + 2(0.6395) - 4(-2.5421)

11. 7339

11. 7339

lOll. 7339

5.42 x loll
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Example 3:

Express JX' ff
in terms of log X, log Y and log Z.

ZS

Solution:

Jx' ff ~'~7 (power law: x'ln = n,r,nlog = l"g
ZS ZS

1 ~' IV)= "3 log (Law 3)
ZS

1
Eg

(X' IY) - log z::J (Law 2)= "3

1
Eg x' + log IY - log

zJ
(Law 1)= "3

1
E10g X +

1
log Y - 5 log z~ (Law 3)= 2"3

III CONNECTION BETWEEN EXPONENTIALS AND LOGARITHMS

Taking the logarithm of x to base lI a " and raising "all to
the exponent x are opposite operations in the same sense that
multiplication and division are opposite operations, ie, the
one operation 'undoes' the other.

For example, anyone of the following sequences of opera­
tions on x will give x back again as the final result:

(1) first multiply by 2, then divide result by 2,
ie, (2x) f 2 = x.

(2) first divide by 2, then multiply result by 2,
ie, (x+2) (2) = x.

(3) first take logarithm to base 2, then raise 2 to the result,
ie 2!Og2X = x.

(4) first raise 2 to exponent x, then take logarithm of result
to base 2; ie, 1 2x

Og2 = x.

The above explanation can also be presented in tabular
form. - 7 -



Table Illustrating the Effect of Applying Opposite operations
Consecutively

Start With x x x x

First add k multiply exponentiate take log to
Operation by k with base a base a

Interim
x + k kx aX 109

a
,XResult

Second subtract divide take log to exponentiate
(Opposite) with base ak by k base a (ANTILOG)Operation

Final (x+k) -k=x (kx) ~k=x 109a
aX=x a lO9a'x=xResult

Example (x+2)-2=x (2x)~2=x 10g2i.c=x 2log2$=x

The connection between logarithms and exponentials can be
further summarized as follows:

are:
The corresponding statements for cornman and natural logarithm~

log lOx = x = 1010g x (common logs)

(natural logs)

- 8 -

At this point the trainee should be able to evaluate simple
expressions involving logarithms, without recourse to aids, by
applying the foregoing definitions.
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Example 4:

Evaluate without recourse to aids: Sl09sx

Solution:

By definition, l09sX
raised to produce x.
5 is being raised to

ie: Sl09SX' = x

represents the number to which 5 must
Therefore, in the above expression,

that number which will produce x.

be

Example 5:

Evaluate without recourse to aids: e 1n x

Solution:

By definition, In x represents the number to which e must
be raised to produce x. Therefore, in the above expression,
e is being raised to that number which will produce x.

ie: e1n x = x

IV SOLVING EXPONENTIAL EQUATIONS

Example 6:

Solve for x correct to 2 decimal places: e-Q~X = 5

solution:

In e- O•6X = In 5 (take natural log both sides)

ie, -0.6 x

. . '"
= 1n 5

1n 5= -0.6

= 1. 6094
-0.6

= -2.6823

correct to two decimal places, x = -2.68

- 9 .



Example 7:

Solve for x correct to 2 decimal places: 3x
= 5

Solution:

Method (i)

log 3" ~ log 5

" log 3 ~ log 5

log 5" ~ log 3

0.6990
~

0.4771

~ 1. 4649

x = 1.46, correct to 2 decimal places

Method (ii)

In 3x = ln 5

x In 3 = In 5

(take natural log of both sides)

(law 3)

" ~
In 5
Yn3

. .

1. 6094
z 1. 0986

= 1.4649

x = 1.46, correct to 2 decimal places.

This example has been evaluated using both common and
natural logarithms to demonstrate that, regardless of
which base is used, the answer will be the same.

- 10 -
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Example 8:

The activity of a radioactive source after t seconds is
given by:

where Ao = original activity at t = 0, and A is the decay
constant in 5- 1 (per second)

(a) If Ao = 9.5 ei , A(t) = 7.2 Ci, and t = 2 hr, calculate ~.

(b) Using that value of A, calculate the half life of the
radionuclide (ie, the time for the activity to decrease
by a factor of 2).

Solution:

Method (i)

e -7.2x 10")."(a) 7.2 = 9.5 (t = 2 hr = 7.2 x 10' seo)

log 7.2 ~ log 9.5 - 7.2 x 10' A log e (common log of
both sides)

log 7.2 - log 9.5A ~

- 7.2 x 10' log e

0.8573 - 0.9777=
-7.2 x 10' x 0.4343

= 3.85 x 10- ,

A = 3.85 X 10-' S-I

- 11 .



Method (ii)

7.2 = 9.5e-7 . 2 x 10'.

In 7.2 = In 9.5 - 7.2 x 10'. In e (nat. log of both sides)

• = In 7.2 - In 9.5

-7.2 x 10 3 In e

. 12 -

1.9741 - 2.2513= - 7.2 x 10' x 1

= 3.85 x 10- 5

• = 3.85 x 10- 5 S-1

NOTE: Whether you use cornmon logs or natural logs, the
answer is the same.

(b) Let T be the half-life of the radionuclide

After 1 half-life, A(T) = .5 Ao

ie: .5 A, A -3.85 X 10- 5 T= ,e

.5 -3.85 X 10- 5 T= e

ln . 5 = -3.85 X 10- 5 T In e

T = ln .5
-3.85 x 10- 5 x ln e

= -0.6931
-3.85 x 10- 5 x I

= 1.8 x 10' s

T = 1.8 x 10' s = 5 h
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ASSIGNMENT

1. If, at t = 0, the switch is closed in the circuit
illustrated below, the voltage V across the capacitor
after t seconds is given by the formula,

V( t) = V e- t / RC
o c

R

where

R

volts is the original voltage across the capacitor
at time t = 0,

ohms is the resistance in the circuit, and

C farads is the capacitance of the capacitor.

Find (i)

(ii)

R

the discharge current,

(recall Ohms Law: I =

Itt)
Y-)
R

if (a) Va = 12 V, V(t) = 2 V, t = 6 S, C = 2 F

(b) V
o

= 1 v, Vet) = 0.1 V, t = 10-'s, C = 200 vF.

2. A radioactive source decays from 10 Ci to 4.5 Ci in 3.0
hours. Calculate

Cal the decay constant A in 5- 1

(b) the half-life in hours

of the source. (A (t) = Aoe-At)

3. Evaluate without recourse to aids:

(a)

(b)

(c)

O,J' 6

(d) 3 1og , 4

(e) 1 0 95 5-°.2.

(f) 2 log 10-s

(g) log, 1024

(h) 2 logs 625

- 13 -



4. A 0.5 VF capacitor, resistor and switch are placed in series
in a circuit. The capacitor is charged to a voltage of 12 V
when the switch is closed. If the voltage decays to 0.1 V
after 2 ms, what is the resistance value in the circuit?

5. In a certain quantity of a radioactive substance, there are
10 20 radioactive nuclei, each of which will eventually decay
by a single disintegration to a stable daughter. If
A = 3.0 x 10- 5 S-I, find the time required for the number
of radioactive nuclei to decrease to 10 15 •

(N (t) = Noe- At )

6. Find x, correct to 2 significant figures:

(a) e- 1 • 17X = 37 • (g) log3 x = 2.7

(b) (1. 73)x = 0.0046 * (h) 10g7 x = 4.8

(c) 3'" = 17 * (i) logs,x = 2.1

(d) e ll • DD3 x = 146.2 • (j ) 10g4 x = 5.3

(e) 2'x
1.3 * (k) log 17:1: = 16.8-.,-- =

(f) e-o, 3X = 25 * (1) log6 x = 7.5

*If your calculator does not have a yX function key,
derive an expression for your answer.

.
7. Express in terms of log X, log Y, and log Z:

(a) log 4/X 3 3/y2 ZS

- 14 -

(b)

(c)

log

log



8. Find " (correct to 3 significant figures) :

(a) e 7.2 = " (d) 10 1
•
7 = "

_ 3.5
(e) lO-Ij.·s(b) e = " = "

(e) e 0.1+
= " - 23.82 (f) 100.e a = " + 6

9. Find '" correct to 2 significant figures:

(a) 7" = "
(b) - 0.'3 = "
(e) 1.41)0 65 ~ "
(d) 6 4•5 = "

L. Haacke
W. Western

321.10-3

- 15 -
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Mathematics - Course 321

USE OF LOGARITHMIC SCALED GRAPH PAPER

We have discussed the use of graphs for many purposes in pre­
vious courses. In all the cases considered, the graphs have been
plotted on squared paper on which all the divisions are equal.
These divisions may be 1/4" long or 1/6", they may be 1/10" or
1 millimeter, but in all cases they are all equal divisions. The
scales used on such graph paper are known as LINEAR scales in the
same way as the scale on a foot rule is a linear scale. The
scale on a foot rule may be subdivided into inches and further
subdivided into tenths, eighths or sixteenths of an inch, but all
the subdivisions are equal in length.

When linear scales are'used on graph paper, they form a grid
of squares all equal in area. This is why such graph paper is
frequently referred to as "squared" paper. This type of graph
paper is known as LINEAR graph paper or, in order to indicate
that linear scales are being used along both x- and y-axis, the
term LINEAR-LINEAR graph paper may be used.

Linear scales and graph paper have many uses and can be use­
ful tools for the solution of mathematical, scientific, or engi­
neering problems. There are some instances, however, where the
use of linear scales is limited and where LOGARITHMIC scales have
a distinct advantage. This lesson will describe logarithmic
scales and the circumstances under which they can be usefully
employed.

Logarithmic Scales

On a logarithmic scale the divisions, instead of being
equally spaced, are made proportional to logarithms of numbers
rather than to the numbers themselves. An excellent example of
a logarithmic scale is that to be found on the scales C and 0 on
a slide rule which are used for multiplication and division.

Figure 1 shows a 5-inch length of line divided linearly into
10 equal parts. The equal parts are numbered from 1 to 10, but
could equally well have been 0.1 to 1.

h I I I t r-l I I I I
1 2 7 9 10

l I I 1 I \ I I I I I1., 2.,
102 3 '+ 5 6 7 8 9

Figure 1

January 1980 - 1 -



The scale goes from 0 to 10. Below the linear scale is
shown the same length of line divided logarithmically. This log­
arithmic scale goes from 1 to 10 or 0.1 to 1 or 10 to 100.

Note that the logarithm of 1 (on logarithmic scale) is zero
(on the linear scale). Also, log 2 (on log scale) is 0.3010 (on
linear scale), log 4 (on log scale) is 0.6021 (on linear scale)
and log 10 (on log scale) is 1.0 (on linear scale).

A logarithmic scale going from 0.01 to 0.1, or 0.1 to 1.0,
or 1.0 to la, etc, is said to cover or span one DECADE. A loga­
rithmic scale can span several such decades, eg, it could go from
0.01 to 100. Such a scale would be made of 4 decades, each like
the one in Figure 1, and this scale is shown in Figure 2.

1r--O~I.-OT2TTInllTTIII-"Tcl-.iT""T,-n"1T1I1 :i
O 01 0.1 1.0•

Figure 2

20 I I I I I '~bo

It can be seen from Figure 2 that each decade of the scale
is subdivided in exactly the same manner. The scale in Figure 2
spans 4 decades or 4 CYCLES.

Uses of Logarithmic Scales

If the linear scale in Figure 1 is examined, it is clear
that the distance between 0 and 1 is only 1/10 of the total
length of the scale. If this distance is further subdivided into
10 equal parts, each part would be 1/1000 of the full scale value
of 10, ie, each part is 0.1. Such a scale then could be used to
measure to 0.1, since these subdivisions could be read with fair
accuracy. However, it would not be possible to subdivide each
0.1 any further, because the subdivisions would be too small.
Therefore, with a linear scale, fractional value of a measured
quantity cannot be measured with any accuracy.

The same length of scale can, however, be spanned with as
many decades of a logarithmic scale as is desirable. For example,
the same length of scale as in Figure 1 is spanned by 4 decades
in Figure 2. If the scale in Figure 2 went from 0.001 to 10, it
would be easy to measure a 0.001 or 0.002 on this scale, ie,
0.01% of the full scale reading. If more decades were used, the
measurement could be even smaller than this. It must be remem­
bered, however, that the distance between 1 and 10 now only occu­
pies the top decade and that there is, therefore, a loss of accu­
racy with the larger values. We can say that:

The advantage with a logarithmic scale is that it ex­
pands the low end of Lhe scale.

- 2 -
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The disadvantage with a logarithmic scale is that it
contracts the high end of the scale with consequent
105s of accuracy.

A logarithmic scale would, therefore, be used where a large
range of values are to be measured. For example, reactor neutron
power may vary from full power (100%) down to zero. During nor­
mal operation of a reactor, a linear scale from 0 to 100% neutron
power would be adequate. However, when the reactor is started up,
reactor power may only be 0.001% or less of full power, but it is
important that these low power values be measured. A guage with a
scale as shown in Figure 3, is in fact used on start up from 0.001%
to approximately 10% full power. Above 10%, the linear scale
becomes more accurate.

" Full Power
(Log Scale)
Figure 3

20

%Full Power

(Linear Scale)
Figure 4

80

Note that low values of power, such as 0.001% and 0.01% are
easily read and can be determined much more accurately than on a
linear scale of the same size. However, values of power from 10%
and up could not be measured as accurately as on the linear scale,
ie, 92% full power could be much more accurately determined on
the linear scale.

The only method of obtaining the same accuracy over the
whole range of values is to use a linear scale, the range of
which can be varied with some suitable range switch. In effect,
this replaces one scale with a number of scales, each covering,
say, 1 decade of the logarithmic scale.

Figure 5 shows another example of the use of a logarithmic
scale. The radiation field in a room may normally vary from 0.1
rnr/hr to 10 rnr/hr, but it may well increase up to 100 mr/hr,

- > -
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Figure 5

1000 mr/hr, or even higher. The only method of covering such a
range on one scale is to use a 5-decade logarithmic scale as
shown. Normal fields are clearly read and high fields can also
be measured to the accuracy required. It would not be possible
to say, with any certainty, whether the field was 8400 or 8500
mr/hr but such accuracy would not be required.

Logarithmic Graph Paper

Logarithmic graph paper is graph paper which is ruled with
logarithmic divisions or scales instead of linear scale with the
divisions all equal. There are as many different types of loga­
rithmic graph paper as there are uses for such graph paper but
they all fall into one of two main groups:

1. SEMILOGARITHMIC or LOG-LINEAR graph paper, in
Which the paper is ruled with a logarithmic scale
in one direction (say, along the y-axis) and with
equal divisions, or a linear scale in the perpen­
dicular direction. Examples of such graph paper
are shown in Figures 6 and 7.

2. LOG-LOG graph paper, in which logarithmic spacing
is used in both directions. Log-log graph paper ­
has been used in Figure S.

Logarithmic graph paper is further classified by the number
of decades covered by the logarithmic scale. The number of dec­
ades covered is known as the number of CYCLES. Thus, 6-cycle
semilog graph paper will have a 6-decade logarithmic scale in one
direction and a linear scale in the other direction. A 4 x 6
cycle log-log graph paper spans 4 decades one way and 6 decades
in a perpendicular direction.

- 4 -
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Gamma Dose Rate vs Penetration Depth in NPD
Concrete Shield
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Dose Rate at One Meter from Gamma Source Versus Gamma Ray Energy

Uses of Logarithmic Graph Paper

The selection of graph paper for a particular purpose will
be illustrated by the following examples:

Example 1:

The neutron power of a reactor, after a sudden reac­
tivity increase, changes with time according to the
equation:

P = 100 eO. 06t Megawatts

- 7 -



Plot the graph of the power against the time for 100
sec and determine from the graph the reactor power
after 60 sec.

The calculated values of neutron power are as follows:

Time t (sec) a 10 20 30 40 50 60 70 80 90 100

Power P (Mw) 100 182 332 605 HOD 2010 3670 6650 12200 22100 40000

From the table it may be seen that a linear scale is
required for the time and a 3-cycle log scale for the
power. The graph is shown in Figure 6, page 5.

Power after 100 sec = 40,000 Megawatts.

Note that on semi log graph paper an exponential graph
is a straight line.

Example 2:

The following gamma radiation dose rate measurements
were taken at various distances through the NPD con­
crete shield:

Distance into
shield from 50 60 80 120 160 200
inner face (em)

Dose Rate (R/hr) 1 x 10 3

1
3.1 X 10 2 42 0.72 1. 2 x.10- 2 2 X 10-4

The distance scale must again be a linear one but the
dose rate has to be a logarithmic scale covering 7 dec­
ades. The graph is shown in Figure 7, page 6.

since the graph is again a straight line, it can be
concluded that the gamma dose rate decreases exponen­
tially through the shield.

If the acceptable radiation dose rate outside the
shield is 1 mr/hr or 1 x 10- 3 R/hr, a shield thickness
of 184 ems, or just over 6 ft, would have been suffi­
cient.

- 8 -
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Example 3:

The dose rate, at a distance of 1 meter from a source
of 1 millicurie, varies with the energy of the gamma
rays emitted by the source. The following table shows
the dose rate for various energy gamma rays. Plot the
curve of dose rate against gamma energy and estimate
the energy when the dose rate is a minimum.

Gamma Energy
0.01 0.02 0.05 0.07 0.1 0.2 0.5 1.0 2.0 5.0 10.0(MeV)

Dose Rate
(mr/hr) at 0.82 0.19 0.036 0.034 0.045 0.105 0.29 0.55 0.93 1.8 3.11 meter from
source

Both quantities span 3 decades and so we require 3 x 3
cycle log-log graph paper. The graph is shown in
Figure 8, page 7.

From the graph, the dose rate is a minimum when energy
= 0.062 MeV.

Example 4:

The radiation dose received in one hour from a small
gamma source varies inversely with the square of the
distance from the source. Consider a gamma source
which causes an exposure of 400 millirems per hour at
a distance of one foot. At other distances, the dose
rates can be found by using the inverse square law.
A few calculated values follow:

Distance (ft) 1 2 4 10 20 100

Dose Rate 400 100 25 4 1 0.04Millirems/hr

Plotting this graph on log-log paper has two advantages:

1. A wide range of values can be covered.
2. The curve becomes a straight line.

(See Figure 9, page 10)

If the student will try to plot a graph of the above
information on a linear-linear graph sheet, he will
immediately see the difficulties involved.

- 9 -
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ASSIGNMENT

1. (a) What is the basic difference between the divisions on a
logarithmic scale and a linear scale?

(b) What is a decade on a logarithmic scale?

2. State the advantage and disadvantage of a logarithmic scale
over a linear scale.

3. Under what circumstances would a logarithmic scale be used?

4. The following table shows the decrease in neutron power in a
reactor following a trip.

Neutron Power
100 2.2 1.0 0.3 0.058 0.013 0.0028 0.0013 0.001(% Full Power)

Time (Minutes) 0 0.5 1.0 2 4 6 8 10 12

Plot the graph of neutron power against time and determine
from the graph the time required for the neutron power to
decrease to 0.1% of full power.

5. The total weight of heavy water in the air in the boiler
room of a nuclear electric station required to produce a
certain tritium concentration is given in the following
table.

Tritium
Concentration 100 500 1000 5000 10000 50000
(M.P.C.)

Weight DzO (lbl 1. 62 8 16.2 80 162 800

Show graphically how the tritium concentration varies with
the weight of heavy water in the room. From the graph deter­
mine the tritium concentration when there are 25 pounds of
DzO in the air in the room

-11·



321.10-4

6. The thermal power in a reactor following a reactor trip
varies with time as shown in the following table.

Time (seconds) 0 0.5 1 5 10 100 1000 10,000

Thermal Power 100 92 67 12.2 7.5 3.9 2.2 1.25
(% full power)

Plot the graph of thermal power against time and, from the
graph, determine how long it takes for the power to drop to
6% of full power.

w. McKee

- 12 -
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Mathematics - Course 221

BASIC RELIABILITY CONCEPTS

The material in this lesson is intended to provide the basic
probability and reliability concepts required in the reliability
evaluation of nuclear power station systems. The emphasis is on
the analysis of safety systems, eg, Eee, shutdown systems, con­
tainment.

I. BASIC PROBABILITY

The word probability is often used very loosely, and it is
important that it is recognized as a technical word implying "a
measure of chance".

Probability is expressed over a scale of 0 to 1 as shown in
Figure 1.

0.5

absolute
impossibility

toss of
a coin

Figure 1

Probability Scale

absolute
certainty

Example 1

Roll a die. What is the probability that a two appears?
There are only six possible outcomes to the experiment and only
one of them gives a two.

The probability of a two appearing is 1/6. Symbolically:

P(2) = 1/6

The proabi1ity of a two not appearing P(2)is 5/6.
Symbolically:

P(2) = 5/6

If P is the proability that an event occurs and q is the
probability that the event does not occur, then:

February 1979 - 1 -



In engineering applications, component success or failure
probabilities cannot usually be determined by their geometries
as in the case of a coin, a die, a roulette wheel, a deck of
cards, etc. A frequency interpretation of probabitity must be
used.

If n is the number of times an experiment is repeated and f
is the number of occurrences of a particular event E, then the
probability of E's occurring,

PIE) = lim

Independent Events

Consider two events: if the outcome of one cannot be af­
Lected by the outcome of the other, they are said to be indepen­
deI}t.

If there are two independent events, Event A and Event B,
the probability of both Event A and Event B happening equals the
product of the probabilities of each happening. The combined
event is designated Event AB.

P{AB} = PIA} x P(B)

Generalizing to n independent events:

P(A,A, ••• An ) = P(A,)P(A,) ••• PIAn)

This relation is of utmost importance in reliability work.
For example, consider an electronic system which is composed of
5 components: the probability that component No. 1 survives
P(Al) is some value Pli for component No.2 P(Az) = pz and so
on. The system will survive (ie, maintain the ability to per­
form its task) only if all its components survive. The proba­
bility of this event is:

P(system survives) = Pl' Pz- P3. P4. ps

In words, the probability that the system surv'ives is the
product of the survival probabilities of its components.

Where do the Pi's come from? They are based on empirically
(based on practical experience rather than theory) determined
failure rates. For systems in the design stage, one uses his­
torical data collected from tests under simulated operating con­
ditions or from items used in similar duty. For operating
equipment, this data can be refined using actual experience: in
this way, the effects of any "local" or individual conditions
can be included.

- 2 -
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II. BASIC RELIABILITY

ReZiability (R) is the probability, at any given instant,
that a component or system will be available to perform its in­
tended function~ Unreliability (Q) is just the opposite of reli­
ability, ie, the probability of being unavailable at any given
instant. Both are dimensionless quantities and represent the
fraction of total time spent in either condition. R + Q must
always equal 1; ie, if a component is out of service 2% of the
time p it means the component must be in-service 98% of the time.
Hence, R = 0.98 and Q = 0.02 and R + Q = 1.

In safety system analysis, we generally speak of unrelia­
bility (Q). This is purely for arithmetical convenience; ie, it
is easier to write an unreliability of 10- 5 than a reliability of
0.99999.

Redundancy

In some instances requirements are beyond the inherent reli­
ability of the equipment. To meet the requirements, one can
employ redundant components. The justification for redundancy is
simply that mUltiple random failures are less likely than single
ones.

There are two types of redundancy - active and standby. In
active redundancy, all components operate simultaneously, while
in standby redundancy, the components operate in solo and require
a switching operation to change from an operating one to a
standby one.

Example of Active Redundancy

The simplest form has only two components, eg, two 100% con­
trol valves. If one or both of them survive (operate as required),
the system is said to be 'successful'.

A

B

- 3 -



'Success Modes'

Both operate as required (each allowing 50% flow)

P(A) " P(B)

A operates allowing 100% flow, B failed

P (A) " [I-P (B) ]

A failed, B operates allowing 100% flow

[I-P(A)] " P(B)

The probability of the system success (required operation)
is equal to the sum of all success modes:

P = P (A) " P (B) + P (A) [I-P (B) 1 + [I-P(A)] " P(B)

= P (A) + P (B) - PtA) " P (B)

If P (A) = P (B) , it is easily shown that:

P = 2P (A) _ P' (A)

= I-Q'(A) when P (A) + Q(A) = I

The probability of at least one component succeSs is equal
to 1 minus the probability that both components fail.

E~ample of Standby Redundancy

A similar approach can be taken with standby redundancy
(eg, 2 x 100% pumps, when one fails the other is switched on).

A

.

B

Two approaches are common: one which assumes failure free
switching and the other which considers that switching may fail.

- 4 -
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III. SAFETY SYSTEMS UNRELIABILITY

Safety systems are standby, 'guardian angel! -systems - they
normally operate only when process equipment fails. For example,
the reactor protective system trips off the reactor only when the
reguZating system fails; otherwise the protective system does
nothing. Similarly, the containment system operates to confine
the spread of radioactivity within plant boundaries only in the
event that both regulating and protective systems fail simultane­
ously.

For safety systems, the unreliability is numerically equiva­
lent to the unavaitabiZity.

Definition

The unavailability Q of a component or system is the frac­
tion of time during which it would not function as required.

Thus: Q = At,

where A is the failure rate in failures per year, and
t is the average fault duration in years.

Failure rates can be calculated on the basis of operating
experience.

Example 2

Calculate the failure rate of a component, given that 6 com­
ponent failures occurred during 4 years' operation of 12 such
components.

Solution A = No. of component failures
NO. component-years of operation

6= 4 x 12

= 0.125 failures/year.

Since safety systems are passive until hazardous circum­
stanceS arise, and since it is unwise to wait for such circum­
stances to arise before finding out whether the safety systems
are still operative, the systems are tested periodically. For
reliability evaluation purposes, the system is assumed to be in a
failed state for one-half the test period each time it fails.
This is obviously the long-term average fault duration, although
the actual fault duration on any particular occasion can be any­
thing from 0 (ie, component fails just as test occurs) to one
test period (ie, component failed at conclusion of previous test).

- 5 .
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The fault duration, T
t = '2 + r,

where T is the test period in years, and r is the repair time in
years.

Normally r«T, and is neglected in reliability calculations.
Accordingly, the usual formula for unreliability of safety sys­
tems is:

Example 3

Pickering Pressure Relief Valves are tested at a rate of 1
per month. Since there are 12 valves the test interval fbr each
is one year, and hence:

Example 4

T
t = "2"

1= "2

• 1
"2

+ r

year + few days

year

- 6 -

During six years of operation, a power reactor experienced
the following independent faults:

- two faults in the regulating system which rapidly
increased the power to such an extent that the
reactor was shut down by the protective system,

- three faults which would have prevented operation
of the protective system if it had been called on
to act, were detected by routine daily testing of
the protective system.

Assuming the faults were repaired within minutes of being
discovered, calculate the annual risk of a run-away accident in
this reactor (ie, the average annual frequency of such accidents) .
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Solution

The annual risk A.R. of a run-away accident equals the regu­
lation system failure rate AR times the fraction of time the pro­
tective system is unavailable, Opt

ie, A.R. = ARQp

= ARA p
:!l'.. { ... Q = 'p :!'f->2 P

1 years
(2 failures) (3 faults, (365

~

2
,

6 years 6 years

= 2 x 10- 1t accidents/year.

- 7 -



ASSIGNMENT

1. In 12 years of operation of 30 pressure detection instru­
ment lines in the containment system, 5 failures were de­
tected. The instrumentation is tested semi-annually. What
is the unreliability of a pressure detection line?

2. In 12 years of operation of 6 dump valves, 3 failures were
found. The dump valves .are tested twice weekly. Determine
the valve unreliability.

3. Assume that the expected frequency of a complete unsafe
failure of the NPD regulating system is once every 2 years.
What is the annual risk of power excursions if the failure
rate of the protective system is:

(a) Complete system failure occurs once each year and
the system remains in the failed state for 1 day.

(b) Complete system failure occurs 6 times each year
and failures are detected and corrected at the
beginning of each shift.

4. Two pumps PI and P2 operate in series. PI raises line
pressure to meet P2'S intake requirements. The system will
fail if either pump fails. If Pi and P2 have unreliabili­
ties of 1.2 x 10-2 and 5 x 10- 3 , respectively, calculate
system unreliability.

5. Two identical pumps, each with unavailability of 2 x 10- 2

are operated in a 2 x 100% arrangement. Calculate the
unavailability of the system.

6. Weekly testing of a system of 15 switches has revealed 50
switch failures in 10 years' operation. Calculate the
unreliability of a switch.

7. How often should a system of 12 dousing valves be tested in
order to meet an unreliability target of 1.0 x 10- 2

, if 15
valve failures have occurred during the past 5 years?

L.C. Haacke
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THE STRAIGHT LINE

I Slope of a Straight Line

The slope of a straight line in the xy-plane is a
measure of how steeply the line rises or falls relative
to the x-axis.

More precisely, the slope of a line is the increase
in y per unit increase in x,

OR the rate of change of y with respect to x.

In Figure 1, for line segment PtPz f

~Y = Y2 - y, is called the rise

~X = X2 - X, is called the run, and

8 is called the angle of inclination of the line.

y

I
I ~Y =___ ~ __ n

I I Q
I I

[llx = Xl - Xl:
__-;?"::::....l::...--@-...L------'--:X

Figure 1

April 1980

¥z - Yl
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The numerical value of the slope, usually designated
"m", is given by

slope m = rise
run

= y:z
Xl

By trigonometry applied to right triangle PIP:zQ of Figure 1,

r-;;-an 8 = ~ = mI - 6x

ie, the slope of a line is numerically equal to the tangent
of the line's angle of inclination.

Note that the angle of inclination is defined as the small­
est angle measured counterclockwise from the positive x-axis
to the line, and therefore is always less than 180°.

- 2 -
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The following table summarizes the correlation between
the slope and orientation of a line in the plane~

Line Orientation Typical Sketch Slope Value

Rising to the right Y

/,~o
m > 0

x

Falling to the right 'Z m < 0

~o

"x

Parallel to x-axis Y m = 0
(l1y = 0)

8 ~ 0

x

Perpendicular to Y m undefined
x-axis (l1x = 0)

,8
x

- 3 -



Example 1

Find the (a) slope (b) angle of inclination of the line
which passes through (-2,4) and (3,-5)

Solution

(al Slope :::= YZ - Yl
Xz - Xl

-5 - 4
3-(-2)

-9
:= or -1.8

""
NOTE: In the previous solution', P 1 (Xli Yl) ::::: (-2, 4) and

PZ (xz 1 yz) =(3, -5). However, the choice for Pl and
P2 could have been reversed without affecting the
answer. (Check this.)

lbl tan e = -1.8

~associated acute angle = tan-II.S
= 60.9°

(ef lesson 321.2()-3l

angle of inclination,

y

= 180-60.9°

= 119.1°

4 -

P,
60.9° A-t-, 119.1"

__-.L_-l,-....l. x

p,
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Example 2

Given that the slope of a line is 1.5, find the change in

ta) x corresponding to an increase of 3 in y.

(b) y corresponding to a decrease of 4 in x.

Solution

Let P(x,y} and Q(x + ~x, y + ~y} be any two points on the
line (see Figure 2) .

Then slope of PQ = ~ =
~x

1.5
y

Q(x + ~x. y + ~y)

(al ~y 3 3 1.5= =* ~x
~

ie, ~x
3

~

1.5

~ 2

p (x. y)

I
I
I
I
I
I___ ...l

~x

x
x increases by 2 if Y
increases by 3 tbetween any
two points on the line.)

Figure 2

\b) ~x = -4 (x increases by -4 if x decreases by 4).

. .

Then ~~ ~ 1. 5

~y = (-4) (1.5)

= -6

y decreases by 6 if x decreases by 4.

II Parallel and Perpendicular Lines

(a) Parallel lines have equal slopes,

ie, line Ll II line Lz +9 rol = ltlz

(b) The slopes of perpendicular lines are negative reciprocals,

ie, line L, ~ line L, ~ 1
rol = - ­m,

- , -



Example 3

tb)
Find the sl'".pe cf l:he family of lines

perpendicula~ to a line L with slope m
Cal parallel
~ 2

"5

Solution

(a) Slope of famil~' of lines parallel to L = m

2
~

"5

(b) Slope of family of lines perpendic~lar to L 1= --
m

III Equation of a Line

The @quat-£on
satisfied by th~

by no others.

'J.f a ?lnq. is the !:'elo."c.ionship which is
'··,-,rdi.r:Cttes of all p·Ji:.lt~ on tht::: line, and

(a) Two-Point F0~m

Required: to find the equation of the line which pass­
'=s~hr\'ugh points PI (X;: ,y!:' and P:! (x,,- ,Yz) •

Solution: Let Pl~IYJ be any point (oth~~ than PI or
P2.) on th.e line (see Fig\".re 3).

'i ," )"
~.,

- 6 -
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Then slope PIP = slope PIP2 (all line segments have same
slope)

ie, i:.::X.l. = y 2 - Y 1
X-Xl Xl Xl

. . Y - Yl (x - x,) [ Two-point form.

Example 4

Find the equation of the line passing through points (-2,4)
and (3,-5).

Solution: Using two-point form,

y, - Y, (x x,)Y - Y, = -x, - x,

ie, -5 - 4
Y - 4 ~

(-2) (x - (-2) )
3 -
-9 (x + 2)= S-

ie, 5y - 20 = -9x - 18

ie, 9x + 5y -2 = 0

Note:

(i) The answer has been expressed in the so-called generat form
of the straight line equation, Ax + By + C = o.

(ii) Points Pl(Xl,Yl) and P2(XZ,Y2) can be interchanged in the
above solution without affecting the answer. (Check this.)

(b) Slope-Point Form

Required: to find the equation of the line having slope
m and passing through PI (Xl, ¥l) .

Solution: Let P(x,y} be any point on the line (see Figure 4).

- 7 -



I
P l tXl, Yl I Y-Yl

I______ --1
X-Xl

y

7"':::...eB-------- X

Figure"

Then slope PIP = m

. y
~e, x - Yl

- x, = m

. . IY - y, = m(x - Xl) I Slope-Point Form.

Example 5

Find the equation of a line with slope -2 and passing
through (-3,5).

Solution: using slope-point form,

Y - Y, = m(x - x,)

ie, Y - 5 = -2(x (-3) )

ie, y - 5 = -2x - 6

ie, 2x + y + 1 = 0

(substitute (-3,5) for (xl'Yl»)

(el Slope-Intercept Form

Required: to find the equation of the line with slope m
and y-intercept b.

Solution: Let P(x,y) be any point on the line (see
Figure 5).

- 8 -
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B (0, b)

y

I
IIy-b_______...l

x-o

--fA--------- x

Figure 5

Then slope BP = m

y - bie, = mx - 0

ie, y - b = xm

ie, jy = mx + b Slope-Intercept Form

Example 6

-3.

2Find the equation of the line having slope 3 and y-intercept

Solution: using slope-intercept form,

y=rnx+b

ie, y = + (-3)

ie, 3y = 2x - 9 (mult. both sides by 3)

ie, 2x - 3y - 9 = 0

Example 7

Find the (a) slope (b) y-intercept (c) x-intercept of the
line 5x - 2y + 10 = o.

Solution: The simplest way to find the slope and y-intercept
is to express the equation in slope-intercept form
by solving for y:

- 9 -
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(a)

5x - 2y + 10 = 0

- 2y = -5x - 10

5
slope m = 2 ' and

(y = nIX + b)

(b) y-intercept b = 5

(e) At the x-intercept, y = o. Thus the x-coordinate is found
by substituting y = 0 in the equation, and solving for x;

5x - 2(0) + 10 = 0

x ~ -2

x-intercept = -2

Example 8

Find the equation of the line L2 passing through the point
(-4,1), and perpendicular to line Ll 3x - y - 2 = O.

Solution: Equation of Ll in "y = rox + b" form is y = 3x - 2

. .. ml = 3

1m, = m,

1= -3

Equation of L z is y - y, = m(x - x, ) (slope-point form)

y 1 1
(x (-4» ((Xl,Yl) (-4,1»- = -3 - =

ie, 3y - 3 = -(x + 4)

= -x - 4

x + 3y + 1 = 0

. 10 -
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IV Graphing Lines

Recall that all equations of the form

Ax + By + C = 0

y=rnx+b

(general form) or

(slope-intercept form),

represent straight lines in the xy-plane. The (x,y) co-ordinates
of every point on a line (and no others) satisfy the equation
of the line.

Steps to Graphing a Line

1. Solve the equation for y (or x) ~

2. Make a table of values containing at least three points.
(The third point serves as an internal check: if all three
points do not line up on graph, at least one point is in error.)

3. Plot points.

4. Draw and label line.

Example 9

Graph the line 2x - Sy + 6 = 0

Step 1: y = 2x + 6
5

Step 2:
x -8 0 2

Y -2 6 2
5"

Step 3, 4:

2x - 5y + 6 = 0

-8 -6 -2

-2

Figure. 6

2 x

_ 11 __



ASSIGNMENT

1. Find (i) the slope, (ii) the angle of inclination, and
(iii) the equation the line passing through the points,

(a) (0,0) and (3,4)

(b) (0,2) and (3,0)

(e) (2,-Z) and (-2,2)

(d) (5,2) and (0,2)

(e) (-3,1) and (-3,4)

2. Show that the following three points lie en the same
straight line:

P(-S,-3) , Q(-I,-I) , R(5,2)

3. Graph the following lines and find their slopes and inter­
cepts:

(a) x + y = 4

(b) 5x - 4y - 20 = °
(e) 5y - 6 = °
(d) 15x + 4 = °

4. State the slope of the family of lines Ca) parallel
(b) perpendicular to each of the lines in question 3.

5. Find the equation of the line passing through the given
point with the given slope.

(a) (4,3), m = 1/3

(b) (-4,-1), m = -5

(e) (-7, -5), m = °

- 12 -
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6. Find the equation of the line passing through the given
point with the given angle of inclination.

(a) (3,3), 8 = 45 '

(b) (-1,4) ,8 = 30'

(e) (2,-5),8 = 135'

7. Find the slope and y-intercept of each of the following lines:

(a) 2x - 5y + 6 = 0

(b) ax + 3y - 7 = 0

8. For each line in question #7, state the change in

(a) x corresponding to an increase of 3 in y.

(b) Y corresponding to a decrease of 5 in x.

9. Find the equations of the following lines:

(a)

(b)

(e)

(d)

(e)

( f)

passing through {-l,4} and (-l,-2)

5passing through (-2,-5) with slope J

with y-intercept -4~ and slope -;

passing through (0,0) and parallel to 4x + Y - 2 ~ 0

with y-intercept 6 and perpendicular to x - Sy + 3 = 0

passi~g through (6,0) with angle of inclination 45°.

L.C. Haacke

- 13 -
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THE DERIVATIVE

I LINEAR FUNCTIONS

Recall that linear functions are functions of the form

f(",j = m.x + b,

where "mil is the slope, and IIbl! is y-intercept of the line
y = f(",) •

y

y= rnx+b

I
I
I by
I

PI (X1/y1) J1
, I
I""; !::.x :> I
I I

Xl+ll. x

Figure 1

For example, as the point P(x,y) moves up the line from
PI to Q in Figure 1, x increases by Ax and y increases by !::.y,
and y increases m times as fast as x, where

m = ~b",

ie, for a line with slope 2, y increases twice as fast as
x as point P(x,y) moves along the line.

In other words, the slope of a line gives the rate of
change of y with respect to x along the line.

April 1980
- 1 -



In Figure I, as P moves from PI to Q, x and yare both
continually changing. Therefore the rate of change of y with
respect to x (the slope) must have meaning not only over the
Whole segment from PI to 0, but at every point along the line.
The slope of the line at a specific point PI may be called the
'instantaneous' rate Of ohange of y with respeot to x at Pl'

Note that "instantaneous" is placed in inverted commas
since x = Xl represents an instant only in a figurative
sense.

The slope of the line at point PI is found by taking the
limit of the slope of segment PlQ as Q moves to Pl along the
line,

ie, symbolically,

slope of line at Pl = lim slope segment PlQ
Q+P l

= lim ~
6:;::-+0 !:l.x

Note: Read "lim" as "limit as Q tends to P 1 of ••. "
Q-+P 1

and "lim" as "limit as 6x tends to zero of ... "
6:1:-+0

Example 1

Find the 'instantaneous' rate of change of f(x) = 2x + 1
with respect to x at x = 3.

Solution

The problem may be restated as follows: "Find the slope
of the line y :::: 2x + 1 at the point Pz(3,7) ".

- 2 -
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y

25

20

15

10

5

y ~ 2x + 1

IT
I
I ~y

__________ ~ 1-
I .. ~x ..I1 II
I I,

t 8
x

2 t 4 6 10

3 3+L'iz

Fi'gur'e 2

The following table has been constructed with reference to
Figure 2, showing the slopes of segments PIQ for various
positions of Q as Q moves towards PI along the line:

Coord's of Q Slope P1Q = li.r.2
.:t2-3

~x X, y,

10 13 27 27-7
213-3

~

5 8 17
17-7

28-3
~

1 4 9
9-7 24-3

~

.1 3.1 7.2
7.2-7

23.1-3 =

.01 3.01 7.02 7.02-7 2=3.01-3

10-' 3 + 10- , 7 + 2 10-' 7+2x10-'-7 2x =3+10-'-3

The pattern of these results indicates that, no matter how
close Q gets to PI the slope of PIQ equals 2, and that the slope
of y = 2,:,C + 1 AT PI(3,7) is therefore probably equal to 2.

- 3 -



This can be proved algebraically as follows:

Slope of line at Pl(3,7) = lim slope of segment FlQ,
Q-+P 1

where Q has coordinates X2 = 3 + ~x

and Y 2 = f(~2)

~ f(3 + ~:x:)

= 2(3 + ~:x:) + 1
= 6 + 2~:x: + 1
= 7 + 2~re

slope of line at P I (3,7) = lim
/J.x+o

= lim
6.x.+o

= lim
6.x.-+o

= lim 2
/1x+o.

y 2.- Y 1

~2.-Xl

(7+2~:x:) -7
3+~:x:-3

= 2 ("2" is a constant,
independent of 6x)

Note that it would be improper to substitute tlOll for l16.x"
before the second-last line above, since this would lead to the
indeterminate form, 110-<-0".

Exercise:

Do an analysis similar to the above to prove that the
'instantaneous' rate of change of f(x) = 5x - 2 at (1,3) equals 5.

Example 2

Prove that the
function

I instantaneous , rate of change of the linear
f(:x:) = m:x: + b

4 -

with respect to x, at point Pl (.xl,Y l), equals "m l
'.

Solution

The problem is equival£mt to proving that the slope of the
line Y == mx + b at the point. PI (XI,Y d equals lim".
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y

J:l+AX

Figure 3

Slope of y = mx + b at PI = lim ~, (see Figure 3)
b..x+o

where b.x = X2 - $1

= (Xl + Ll.x) - Xl

= I1x

and ~y ~ y, - y 1

~ f(x,) - f (x,)

~ (rnx , + b) - (rnx 1 + b)

~ m(x2, - x,)

= m~x

slope at PI = lim
6:r;+0

= lim m
!J.x+o

= m

CONCLUSION: THE 'INSTANTANEOUS' RATE OF CHANGE OF A LINEAR

FUNCTION EQUALS THE AVERAGE RATE OF CHANGE OF THE

SAME FUNCTION, AND BOTH ARE EQUIVALENT TO THE SLOPE

OF THE LINE REPRESENTED BY THE FUNCTION.

- 5 -



Notation: " lim
/::'x+o

~II

M, is abbreviated

read "dee y by dee x", and is called the derivative of Y
with respeat to x.

Definition:

The derivative of a function f(x) with respect to $ is the
'instantaneous I rate of change of the function with respect to x.

Thus the words II I instantaneous I rate of change" are inter­
changeable with "derivative II in the foregoing.

II GENERALIZATION TO INCLUDE NONLINEAR FUNCTIONS

Definition:

The derivative ('instantaneous' rate of change) of a
function f{$} at the point P1(Xl,Yl) is the limit as 6x tends
to zero, of the average rate of change of f(x) with respect to
x over the interval x = Xl to X = Xl + ~x.

Symbolically,

ft (xd :::: lim
/::'x-+o

f(x,+~",) - f(xd
M,

- 6 -

The notation Ilfl (Xl) ", read "f-primed at Xlii, stands for

"the derivative of function f(x), evaluated at x = ,xl"

OR lithe instantaneous rate of change of f(x) with respect to x
at x = XI".

Hereafter "rate of change of" will be abbreviated "Ric" and
"with respect to" will be abbreviated "wrt".

Graphical Significance of Definition of Derivative

Defini tions:

A secant to a curve y = f(x) is a straight line cutting the
curve at two points.
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A tangent to a curve y = £($) is a straight line touching
the curve at one point only.

y

y=f (x)

secant
,
I
I
:~y
I

T i
.......~~P~'~(X:'~'y~~:::;:=:::=== __1

~x I
I

Xl+.lix

With reference to Figure 4, as point P(x,y) moves up the
curve from P1(Xl,Yl) to Q(Z2,Y2) oX changes by fix, from Xl to
Xl + Lix, and y changes by Liy, from f{Xl) to £(X1 + fix)

.0. average Ric f{x) wrt oX = slope of secant FlO

='!JL
~x

= f{x,Hx) - f(x,)
Ax

Now imagine point Q moving down the curve towards Pl. As
Q moves towards PI' the secant PlQ rotateS clockwise and the
interval fix shortens, until, in the limiting position Q coincides
with PI, Ax = 0, and secant P1Q coincides with tangent FIT.
Furthermore, the average RiC f(x) wrt x (secant slope) becomes
the 'instantaneous' RIC £(x) wrt oX (tangent slope) .

It should be obvious that the tangent slope at PI equals
fl(XI}' the derivative at PI' since the tangent takes the same
direction as the curve at Pl. Thus the RiC y wrt x along the
tangent line is the same as along the curve at the point of
tangency. In fact, when one speaks of the "slope of a curve"
one is understood to mean the "slope of the tangent to the curve".

- 7 -
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To summarize, the following are equivalent:

(l) 1 instantaneous , RIc fez} wrt oX at x = Xl

(2)

(3 )

the derivative of f(x) evaluated at x = oX 1 :

f' ("'ll
f(x, + Ax) - f (x II= lim Ax

6:;;-+0

the instantaneous RiC y wrt ;:c at x = ::c 1, where y = f (xl

~ = lim ~ (Ax = "" - x,)
6o::c+o

A",

(slope of secant PIQ)

(6) slope of curve y = f(x) at oX = Xl

Example 3

Find the 'instantaneous' RIC f(x) = x 2 wrt oX at x = 2.

Solution

y

1 2 3 41' 5

2 + I>x

IT
I I
I !

T : Ay

I I
i I

., (2 ,4) ~ 1
I. Az --..,

5

10

20

15

25

-1

Figure 5

- 8 -
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The following table has been constructed with reference to
Figure 5, showing the slopes of secant PIQ for various positions
of Q as Q moves towards PI along the curve:

Coord's of Q

6",
"" y, Slope P,Q = y, -4

,x2 -2

5 7 49 49-4 = 97-2

1 3 9 9-4 53=2 =

0.1 2.1 4.41 4.41-4 = 4.12.1-2

0.01 2.01 4.0401 4.0401-4 = 4.012.01-2

10-' 2 + 10-' 4+4xlO- 6 +10- 12 4+4xIO- 6 +10- 12
4 + 10-'=

2+10-'-2

The pattern of these results indicates that the slope of
secant P1Q approaches ever more closely to 4 as Q approaches
PI along the curve, ie, that the tangent slope of p] is likely
equal to 4.

= lim
63:+0

= f' (2)

f(2+6",) -f(2)
6",

This will now be proved algebraically:

Tangent slope at PI (2 ,4)

= lim
1:::.:1:+0

(2+6",)'-2'
A",

= lim
6x+o

= lim
!J.x-t-Q

= 4

- 9 -
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Exercise:

Do an analysis similar to the foregoing to show that the
'instantaneous' Ric f(x) = 2x 2 + 5 wrt x at x = 3 equals 12.

Example 4 - Power Functions

Definition:

A power funation is a function of the form f(~) = X'n,
n a constant.

The derivative of f(x) = x D at point P1(Xl,Yl} is

£1 (xI> = lim
!J.x+o

= lim
t::.x-+o

f (", 1+6",) -f (", Il
6",

It can be shown with the use of the binomial expansion
formula, which is beyond the scope of this course, that this
limit equals nx1n-l, ie,

f I (x d n- 1= nXl

Since Xl can take any value, the subscript on Xl can be
dropped, and the general result for a power function is:

f ("') = ",n ==f> f' l"') = =n- 1
[

NOTE that fl(x) is the derivative [unction, ie, £1 (x)=nxn - 1 ,
is a formula for calCUlating the 'instantaneous' RIC f(x) = X'n
wrt :r; at any point P(x,y} .

Example 5

Use the result of Example 4 to obtain the 'instantaneous'
RiC f(",) = ",'wrt '" at '" = 2 lef Example 3).

- 10 -
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Solution

f(",) = ",' ~ f' (",) = 2",'-1

= 2",

· .

· .

f' (2) = 2(2)

= 4

'instantaneous I RiC f(x) = x 1 , at x = 2, equals 4.

· .

Example 6

Find the slope of the tangent to y = x 3 at x = -2.5.

Solution

f(",) = ",' ~ f' (",) = 3""

f'(-2.5) = 3(-2.5)'

= 18.75

slope of tangent to y = x 3
, at x = -2.5, equals 18.75.

NOTE that alternative notations for writing down the
result for power functions are:

or, simply,

" d II
In the latter notation dx' read "dee by dee x of •.. II I

is regarded as an operator, which operates on the function xn

to produce its rate of change, nxn- 1 •
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III STANDARD DIFFERENTIATION FORMULAS

Definition:

To differentiate a function is to find its derivative.

The process of differentiating is called differentiation.

Trainees are expected to be able to apply the following
formulas:

(1) d n na::n - 1 (power rule)- '" =
d'"

(2) d d f (",) , where II el' iscrx of (",) = 0
d'"

a constant

(3 )
d

0, where lie" isax o = a constant

(4) d (f(",) ± g(",») c& f ("') ± ~ 9 ("')crx =

The power rule was developed in the preceding section.
Formula (2) may be stated epigrammatically as follows: liThe
derivative of a constant times a function equals the constant
times the derivative II •

Proof of Formula 2,

Let g(",) = of(",)

Then, g' ("') = lim g("'+~"')-g("')

6.a::-+o ~'"

= lim
of (",H",) -of (",)

6.a;:-+o ~'"

= 0 lim f(",+~",)-f(",)

b.x-+o ~'"

= of' ("')

• d~ of ("')
d

• . = o dx f (",)

- 12 -
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Example 7

d 7' 7 d _,cw :x; = cw-
= 7(5:X;')

= 35::: 11

Proof of Formula 3:

Let f(:x;) = c.

Then, £1 (.x) = lim
1:::.:::+0

f (:x;+A:x;) -f (:x;)
l:x;

= lim C - c
I:::.x-+o !J.x

1
, 0

= 1m 7S:ii
6.x+o

= 0

Aside:

Note that if "QII were actually substituted for "l1.,x" in the
second-last line above, the result would be the indeterminate
fann "0+0"; however, the process of taking the limit as !J.::r:-+o
is not that of simply substituting "0 11 for "6x", but· rather that
of ascertaining the value of an expression as 11.6:::" tends to "0".
(A more advanced or rigorous treatment would include a formal
discussion of Zimit theory; this text glosses over many
subtleties of the subject.) Note that 0+1:::.:::=0 for any finite value
of i:::..x, no matter how small.

Note that the graph of y = f(.x) = c is a straight line,
parallel to the .x-axis, with slope equal to zerO (see Figure 6) ,
consistent with a zero derivative value.

- 13
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(o,c)

y=c
(Slope ~!l!L •• )

d:l:

Figure 6

Example 8

( a) ~8 = 0dx

(b)
d (-13) = 0dx

( c) d ~ = 0dx

Proof of Formula 4 :

Let h (x) = fIx) + g(x)

Then, h' (x) = lim h (xHx) -h (x)
Ex

tlx-+o

= lim
/J.x+o

[f(x+6x)+g(x+6x)]-(f(x)+g(x)]
6x

+ 9(XHX)-9(X»)
Ex

[f(x+6x)-f(x)]+[g(x+6x)-g(x)]
6x= lim.

6.x+o

= lim Qf(X+6X)-f(X)
6x

/J.x+o

= lim
63:+0

f(x+6x)-f(x) + lim g(x+6x)-g(x)
/J.x tlx+o 6x

= f' (x) + g' (x)

- l4 -
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ie, d = ~ f(x)+ ~ g(x)"" [f(x)+g(x)]

The proof is similar that

d d~ f(x)
da? [f(x)-g(x)] = -- g(x)

dx

Example 9

(a) d [a;3+x 7] d , + d :r:7 (law (4) )

"" = ""x di"

= 3x' + 7:x;6 (law (1) )

(b)
d [6x'-2",'] d 6a: 2 d 2xs (law (4) )

dx = di" di"

= 6 ..!!. :c 2 _2..£..x 3 (law (2) )
dx dx

= 6 (2x) - 2(3x') (law (1) )

= l2x - 6 x 2

(e) d [15x'+10 l ..E.. 15.x 2 + ~ 10 (law (4»dx = dX dx

= 15 d x' + 0 (laws (2) , (3) )

""
= l5(2x) (law (1»

= 30 x

(d) d 2IX d 2 " (\y:; = X
YD )az =

"" x

= 2 ~ x" (law ( 2»

=4x "-') (law (1»

=x-"
1 1

or
x" or IX

- 15 .
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Example 10

Find the tangent slope to the curve y = /;X (~2+5) at x = 1.

Solution

Since the rule for differentiating a product of two funct­
ions of x (~and (x 2 +5») has not been given, the product
must first be evaluated:

y = IX (",'+5)

= "," (",'+5)

= "'~ + 5","

Then ~
d (il: + 5"''')= d",

= d ~ + ~ 5","- '"d",

5 ~ d"= 2 x + 5 ~ x

(law (4))

. .

- 16 -

at x = I, tangent slope 5 5
= 2" y'1T + 2Y'I

5 5
= 2" + 2"

= 5
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ASSIGNMENT

1. Find the tangent slope at (x,f(x» for each of the
following functions:

(i) by evaluating lim
b.x+o

f (x+Ax) -f (x)
ax

(ii) by applying the differentiation formulas.

Include graphs of the functions, and evaluate the tangent
slope at x = 2 in each case.

( a)

(b)

f (xl

f(x)

= 5x 2 - 2a: + 1

2= -x

2. Find ~

(al y = 2x' - 4x' + 15

(bl x' a' where "a II is constanty = -+ ;;r a
a'

3
(e) y = k

3. Find f'(x):

( a) f(x) = x' - 6x + 3

(bl f (xl = x' (2x'-ll

(e) f(x) = ax' + bx + e

(dl f(x) = YX2 - 3r:r - 5

-17



221. 20-2

4. Find

(a) the 'instantaneous' Ric y = 2%3 - 3x 2 - X + 5 at x = 2~

(b) the slope of the tangent to y = ",+1
.rx

1at x = 4"

(c) the values of x at which
x 2 + x wrt x are equal.
of solving quadraticS.)

the derivatives
(See Appendix 3

of 04: 3 and
for methods

- 18 -

L.C. Haack.e
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Mathematics - Course 221

SIMPLE APPLICATIONS OF DERIVATIVES

I Equations of Tangent and Normal to a Curve

This exercise is included to consolidate the trainee's
concept of derivative as tangent slope, and to review the
procedure for finding the equation of a straight line.

DEFINITION: The normal to the curve y = f(x) at a point
P(x,Y) on the curve is the straight line
passing through P, which is perpendicular
to the tangent at P.

y

T

N
-----tI7------------x

Figure 1

y = f (xl

In Figure 1, PIT is the tangent, and PIN is the normal
to the curve y = f(x), at the point PI (XI'Yl).

The slope of tangent FIT = fl(Xl)'

. . Equation of tangent PIT, is

I y - y, = f' (x,l (x - x,) (slope - point form)

April 1980 - 1 -



Since the slopes of perpendicular lines are negative reciprocals
(ef 221.20-1) •

equation of normal PIN is

Y - Yl =

Example 1

Find the equations of the tangent and normal to the
curve y = 4x - x 3 at x ~ 2. Sketch the graph of y = 4x _ x 3 ,

showing tangent and normal at x = 2.

Solution

First find the y co~ordinate at x = 2, using curve
equation y = 4x - x 3 :

Y = 4 (2) - (2)'

= 0

. . Curve, tangent and normal intersect at (2,0).

dy
dx =

. .

at (2,0), tangent slope = 4 - 3(2)2

= -8

tangent equation is y - Yl = m(x - Xl)

ie, y - 0 = -8(x - 2)

= -8x ... 16

ie. 8x... Y - 16 = 0

Slope of normal = 1
tangent slope

- 2 -

1
= - -8

1
= 8"



. . Equation of normal is y - y, = m(x - x,)

ie, 0
1 (x 2)Y - = 8" -

ie, 8y = x - 2

221. 20-3

ie, x - By 2 = 0

The curve, tangent and normal are shown in
Figure 2.

y = 4x - x 3

-4

Y

6

3

-6

Figure 2

8x + Y - 16 = 0

- 3 -



II Displacement, Velocity and Acceleration

The application of derivatives to such familiar concepts
as velocity and acceleration should reinforce the trainee's
intuitive grasp of the significance of a derivative as a rate
of change.

The present discussion of displacement, velocity and
acceleration will be limited to the case of motion in one
dimension only.

DEFINITION: The displacement (designated "s") of a particle,
restricted to move along an axis, is given by
its co-ordinate relative to the origin on the
axis.

eg, displacements of particles #1, #2, respectively,
in Figure 3 are -3 and +5.

particle U particle #2

t ~
• • I s

-4 -2 0 2 4 6

Figure 3

DEFINITION: Velocity (designated "v") is the rate of change
of displacement with respect to time.

DEFINITION: Aaceleration (designated "a") is the rate of
change of velocity with respect to time.

Suppose a particle moving along the displacement axis
passes points A and B, separated by a distance ~s, at times
tl and t 1 + fit, respectively (see Figure 4).

t, t, + At

~ ~
I-- s, _-I ~ As • I, I >- S

0 A B
4 - Figure 4
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The particle's average velocity between A and B is

M
= ~t

Its instantaneous velocity AT point A is

= lim
!J.t+o

ie, restating the above in alternative notation,

where s(t) is the displacement function.

The connection between ~ of this lesson and ~ of

lesson 221.20-2, will be obvious from Figure 5, which shows
a typical graph of displacement versus time.

s
s = s(t)

Q(t2,S;!l
B --------------------

A

I
I
I
I~s

T I
I
I
I_______J

~t I
I
I
I
I

-~I7_--------:t_--_;:_~__._::__-t
t 1 + lit

Figure 5

- 5 -



In comparing Figures 4 and 5, note that points A and B
appear on the vertical axis, and instants t 1 and t l + bt on
the horizontal axis of Figure 5.

The trainee should refer back to Figure 4 of lesson
221.20-2, and note its similarity to Figure 5 on previous
page.

From Figure 5,

i.-------_v~---~/

instantaneous R/ C "s" wrt

instantaneous velocity, by
definition

"t" = lim (slope of secant PIQ}
Q-+PI

= slope of tangent PIT

= derivative of s(t) at t = t 1

Note that in this application "instantaneous" does not appear
in inverted commas, because t = tl does, literally, represent an
instant of time.

To Summarize:

average velocity v

instantaneous velocity v(t)

~s=
~t

ds
= dt = lim

D.t-+o

~s

~t = S I (t)

= slope of tangent to
curve s = s (t)

Similar reasoning yields the following results for
acceleration "an:

average acceleration a

instantaneous acceleration a(t)

bv=
bt
dv= =at lim

D.t-+o
V' (t)

- 6 -

= slope of tangent to
curve v = v(t)
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Example 2

Find the velocity and acceleration functions if
the displacement function is

s(t) ~ 6t' - 4t ~ 2

Calculate the velocity and acceleration at t = 5.

Solution

Velocity function vet) = Sl(t)

= d (6t' - 4t ~ 2)at

= 12t - 4

Acceleration function aCt) = viet)

= £t (12t - 4)

~ 12

Velocity at t = 5, v(5) = 12(5) - 4

= 56

Acceleration at t ~ 5, a(S) = 12

Example 3

If an object is thrown vertically upward with
initial velocity Vo mis, neglecting air resistance,
its displacement upwards from its starting point is
given by the function

set) = vat - 4.9t 2 meters.

Find the time it takes a ball to reach its maximum
height if thrown upward with initial velocity of 30 m/s.

- 7 -



Solution

Vo = 30 -> set) = 30t - 4.9t'

The ball will be at maximum height when its velocity
has fallen to zero. Therefore, proceed by setting the
velocity equal to zero, and solving for t:

vet) = 8 1 (t)

= 30 - 9.8t

vet) = 0 -> 30 - 9.8t = 0

t 30= "9:"]"

= 3.1

ie, ball reaches maximum height after 3.1 seconds.

Example 4

Two particles have displacement functions Sl(t) =
t 3

- t and S2(t) = 6t 2 - t 3 , respectively. Find their
velocities when their accelerations are equal.

Solution

Differentiate once to get the velocity functions:

Differentiate again to

()
dVIal t = -at ~ 6t, and az{t)

v, (t) =

get the

dv,= =dt

dS 2 = 12t _ 3t2
dt

acceleration functiorts:

12 - 6t

- 8 -

Set al = az and solve for t:

6t = 12 - 6t

12t = 12

t = 1
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Substitute t = 1 in v ... functions:

v 1 (1) = 3 (1) , - 1

= 2

and v,(l) = 12 (1) - 3 (1) ,

= 9

ie, particle velocities are 2 and 9 when their
accelerations are equal.

ASSIGNMENT

1. Find the slope of the given curve at the given point:

(a) y = 8x - 3x' (2 ,4)

(b)
8

y = X' (2,2)

(c)
2 (2,3)Y = x + -x

2. At what point is 2 the slope of the curve y = 4x + x~?

3. Find the equations of tangent and normal to the curve

(a) y = x (2 - x)' at x = 1

(b) y = x 3 + 3x- 1 at x = 1

l. Find the velocity and acceleration at t = 2 given the
displacement function

(a) s (t) = 8t' - 3t

(b) set) = 20 - 4t' - t'

(c) s (t) 10 (t' + 8)= t



5~ A baseball is thrown directly upward with initial velocity
22 rn/s~ Neglecting air resistance, how high will it rise?

6. Given f(x) x'= ~ - x 2
- 2x + 1, find the roots of the equation

f1(x) = 0.' What significance db
curVe y = f(x)? Plot Y = f(x).
of solving quadratics) 0

these roots have for the
(See Appendix 3 for methods

- 10 -

L oC. Haacke
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Mathematics - Course 221

DIFFERENTIATING EXPONENTIAl FUNCTIONS

I Derivative of eg(x)

Recall (lesson 221.20-2) that the derivative of the
function f(x) is the 'instantaneous' rate of change of f(x)
with respect to x.

y

y = eg(x)

Q(xz, Y2)
I
I
I
I ~y

PdXl, yd T I
I

------------1
~x I

x

Figure 1

In Figure 1, the 'instantaneous' RiC f(x) = eg(x)
wrt x at x = Xl is equivalent to

(1) lim (slope of secant P,Q)
Q+P,

( 3)

(2) slope of tangent PIT

fl(XI), the derivative of e 9 (x) evaluated at x =

Recall (lesson 221.20-2) the basic defining equation
of the derivative of f(x):

f' (x) ~ lim
!J.x"'O

f(x + Ax)- f(x)

Ax

February 1979 - 1 -



Applying this equation to f(x) = e 9 (x) yields

f' (x) = lim
!J.x+o

e9(x + Ax) _ e 9 (x)

Ax

It can be shown (but is beyond the scope of this course
to do so) that the above limit reduces to

e 9 (xl 9' (xl

Hence the formula for the derivative of an exponential
function is

Example 1

d eX x d
dx = e ax x

= eX

=

Note that eX equals its own derivative:

Example 2

d
dx

x'6e = d x'
6 dx e

- 2 -

x' d x'= 6e ax
,

= 6ex (2x)

x'= l2xe



Example 3

d e 2IX e 2IX d 2IXax = ax

= e 2IX (2..2. XII, )dx

= e 2IX (,2) (~ x _1/,)

Example 4

221. 20-4

d
ax

-ax 2
(15x' - e ) = d

ax
d

ax

= 15 ~ x 3
­dx

-ax 2

e d~ (-ax')

_ax 2
= l5(3x')-e (-a

-ax 2
= 45x 2 + 2axe

Example 5

Given the displacement function

2 _o.ltt,
s(t) = 5t + lODe

(a) find the velocity function vet)

d
ax x' )

(b) find the acceleration function alt)

(c) sketch the graphs of s(t), v(t) and a(t)
over the interval O<t<lO

- 3 -



5 (10)

- 4 -

Solution

(a) v(t) = 51 (t)

= J (5t' + 100e-Mt)

= lOt + 100e-o... t J (-0.4t)

= lOt _ 40e -I>o4t

(b) a (t) dv= dt

10 d 40
d -0.4t

= dt t - dt e

10 40e
-O.lj.t d (-0.4t)= - dt

10 + 16e
_0.4 t

=

t 0 1 2 3 4 6 8 10

5 100 72 65 75 100 189 324 502

v -40 -17 2 18 32 5.6 78. 99

a 26 20.7 17.2 14.8 13.2 1l.5 10.7 10.3

The following are sample calculations of those
used to produce the above table of values:

-0... (10)
= 5(10)' + 100e

_4
= 500 + 100e

= 500 + 100 (0.018)

= 501. 8
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v(lO) 10(10) 40e
_~.(10)

= -
= 100 - 40 (0.018)

= 99.3
~

a(lO) = 10 + 16e-o"(10)

= 10 + 16 (0.018)

= 10.3
~

It was stated in lesson 221.20-3 that velocity is the
slope of the s-t curve, and that acceleration is the slope
of the v-t curve. Are these statements consistent with the
curves of Figure 2?

Note that the slope of the s-t curve is negative at
t = 0, rises to zero at the curve minimum (t = 1.9), and
then increases positively to t = 10. Note that this is
precisely the behaviour of the v-t curve.

Note that the v-t curve rises most sharply at t = 0,
and gradually settles to a slower, almost linear rate of
rise. Accordingly one would expect a positive acceleration
in the entire interval O<t<lO, and one that would fall from
its initial value towards a constant value. This is precisely
the behaviour of the a-t curve.

- 5 -



80

v(t)

40

8

o
2 4

t

6 8 1

-4

a(t) _ 10 + 16e- h •
t

20

a(t) 10

o
2 4

t
6 8 10

- 6 -

Figure 2
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II Application to Nuclear Decay

The number of radioactive atoms rema~n~ng in a radio­
active source decays exponentially with time, according to
the relation.

-At
N(t) = Noe

where N(t) = number of radioactive atoms remaining after
t seconds,

No = number of radioactive atoms at time t = 0, and
_1

A is the decay constant of the radionuclide in s

To find the RIC N wrt t, ie, the number of nuclei
decaying per second, differentiate the above relation
wrt time:

dN d -At
dt = dt Noe

No
d -At= dt e

No -At d (-At)= e itt

No e-At(_A d t)= itt

-ANoe-At=

I dN
-AN Idt =

(No a constant)

Note that ~ stands for the rate of increase in N.

Hence ~~ is negative (see minus sign on RHS), since N is

actually decreasing.

- 7 -



The number of nuclei decaying per unit time is called the
activity of a source.

Example 6

How many radioactive nuclei are required to make a
5 mCi source of a nuclide whose deca¥ constant equals
7.3 x 10- 5

6- 1 ? (1 curie = 3.7 x 10 ° dps)

Solution

dNcrr= -5 mei

=> -AN = -5 x 10- 3 x 3.7 X 10 10

N = 5 X 10-
3 x 3.7 X 10 10

7.3 X 10-'

= 2.5 X 10 12

ie, there are 2.5 x 10 12 atoms in a 5 mCi Source.

* * *

If source activity is designated "A",

- 8 -

then A (t) dN
~ - dt

~ AN

>"Noe
-At

~

then A (0) = t..Noe o

~ AN o

(rate, of decrease in N)



Let

Then

A, = A(O)

A o = ANa

221. 20-4

and I A(t) = A,e- At I
ie, the activity A(t) obeys the same exponential
relationship as N{t} .

Example 7

Find the time required for the activity of a
source of decay constant 3.5 x lO-~ 8- 1 to decay
by a factor of 1000.

Solution

Let required time be tlo

Then A (t,)

ie,

. . -At,
e = 0.001

( ... A (t,) =A,
1

1000 )

Taking natural log of both sides,

. . -At, = ~n 10-' (cf lesson 321.10-4)

t, tn 10- 3

=
-A

-6.91= _4
-3.5 x 10

::= 2.0 X 10 4 seconds or 5.5 hours

- 9 -



Example 8

Prove: t~ = 0.~93 , where t'l{ is the half-life

of a radionuclide, ie, the time required for source
activity to decay to one-half its original activity.

Solution

A(t,;,) = Aoe-AtlA.

A(ty,J
= e -At y,

A,

-At l 0.5 ( ... A(ty,). . e 1', = 0.5 )=A,

~n
-Aty, = ~n 0.5. . e ,

-At V, = -0.693

tv,
0.693= A

III Application to Reactor Power Growth

Reactor power grows exponentially in time, approximately
according to the relation,

P(t) ~ P,e
6k t
L

where pet) is reactor power at time t,

Po is reactor power at t = 0,

6.k is the reactivity in units of "k",

L is the mean neutron lifetime in the reactor.

- 10 -

P (t)

For example, if Po = 100 W,

vs t is shown in Figure 3.

and 6k-r = 0.05, the graph of
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8

~

6k
t

L
~ 6 P ttl = Poe

~

~
:>
0

" 4
~
0.,
0

'"~
'" 2

o 20 40 60 80

Time (Seconds)

Figure 3

DEFINITION: The l'eactor period "Til is the time required
for the power to increase by a factor of e.

Proof that Reactor Period L
= 6k

ie,

ie,

. .

P (T) = eP, by definition of T
6k T

e~, ~,e
L=
6k T
L£n e = £n e

1
6k

T= L

T
L= Kk

- 11 -



· . an alternative form of the power growth equation is

from which it is obvious that each time t increases by T,
P increases by a factor of e, consistent with previous
definition of T.

Not only does the power pet) grow exponentially with
time, but so also does the rate of growth, pl(t), as shown
below:

dP d
dt = dt Poe

Ilk t
L

Ak t
d L= PO dt e

Ak t d AkL t= Poe dt L

Ak t Ak d
Poe L L dt t=

Ak
Ak L t

= - Poe
L~

P (t)

dP
dt =

Ak
L

P (tl = ~ P (tl

- 12 -

Note that power growth rate pl(t) is directly
tional to product of reactivity ~k and power P(t).
given sufficiently high values of ~k and P, pI may
that rated power is exceeded before the regulation
arrest power growth.

propor­
Therefore,

be so high
system can
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Thus, for reactor protection, a signal is required to
detect dangerously high reactivity valves at low power.
Such a signal is one whose output varies as the rate of
change of the logarithm of reactor power. This signal is
known as II ra te log power":

d d
6k t

( ~n P (tl ) Q.n Poe
L

crt = dt

6k t
d ( ~n Po + ~n

L= crt e

d Q.n Po + d 6k t= crt crtL

0 6k d= + L dt t

6k= L

rate log power, d
dt (~n P(t))

6k 1
= =L T

Note that rate log power is proportional to reactivity
~kt independent of reactor power. Hence the reactor can be
tripped by this signal at low power, eg, 0.001% full power,
long before the Zineal" rate power, pl(t) gets out of hand.

- 13 -



ASSIGNMENT

1- Differentiate:
,

-x(a) eX -4 (b) -e

-x- 1 -l/IX
(e) -e (d) 2e

(e) sert (t'-1)
( f) 1 -l/X'

"3 e

2. Find (i) v(t) (ii) a (t) (iii) v (2) if

(a) s (t) = e
t - t 3

(b) s (t)
-t

2t= e +

3. Plot s - t, v - t, a - t curves for the displacement function
of 2(a) above over the time interval 0 < t < 3. Do the slopes
of the s - t and v - t curves appear to-verIfy the definitions j

v(t) = Sl(t) and a(t) = v1(t), respectively?

4. If 2.0 x lOl~ radioactive nuclei constitute a 5.0 mei source,
what is the decay constant of the radionuclide? (1 curie =
3.7 x lOll) dps)

5. (a) What is the activity of a source consisting of 7.0 x lOIS
radioactive nuclei, and having decay constant 2.4 x 10- 4

-I?S •

(b) How many radioactive nuclei remain after (i) 20 minutes?
(ii) 6 half-lives?

(0) Calculate the source activity after (i) 20 minutes
(ii) 6 half-lives.

(d) Calculate the half-life of the source.

(e) How long does the source take to decay to 10 rnCi?

6.

- 14 -

(b) A (t)

and A

-At= Aoe

dN
= - dt , prove that (a) A = AN



7. Prove that t l;f tn 2= -A-

8. If P (t) = poe t / T , prove that

(a) pI (t) 1
~'fP(t)

(b) d p (t) 1at tn = if

221. 20-4

9. Plot a graph of

hours if N(t) =
N(t) VB

-AtNoe ,

t over the

where No =
interval a < t <

10 20 and A = 6.4

18
X 10- 5 -IB •

(a) on linear paper (h) on log-linear paper.

10. (a) Make a table of values of reactor power P(t) and linear
rate, pl(t) with 20-second increments in t over the
interval a < t < 5 minutes. Assume Po = lOa wand

6~ = 0.05. - Ex~ress P and pI in units of % full power,

assuming full power equals 100 MW.

(b) Show consecutive positions of indicating needles on the
following meters, at 20-second intervals.

50

% Full Power
(linear scale)

o 100

- 15



10- '.-'_---+---_

% Full Power
(log scale)

1

10'

(c) Describe the needlels motion across each of the above
scales, and relate descriptions to the mathematical
expressions for linear rate and rate log power.

(d) Which meter is more suitable for monitoring power at
low power levels? At high power levels?

(e) Which of the following signals is more appropriate for
reactor power control

(i) at low power levels?

(ii) at high power levels?

a signal whose output is proportional to reactor power
P, or one whose output is proportional to the logarithm
of reactor power, log P?

11. Explain the advantage of a rate log signal for reactor
protection.

12.

- 16 -

d
Show that dt (log P(t»)

common logarithm of P.

ok
= L log e, where log P is the

L.C. Haacke
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Mathematics - Course 221

THE DERIVATIVE IN SCIENCE AND TECHNOLOGY

I Some Common Differential Equations

CalculUs is to modern science and technology as arith­
metic is to accounting. Arithmetic provides the notation
and techniques for computing credits, debits and balance on
hand; calculus provides the notation and techniques for
computing the 'instantaneous' or true rate of change of one
physical variable with respect to another, given the math­
ematical relationship between the two variables. Without
calculus, only average rates of change can be calculated,
in general. (Calculus provides also the notation and tech­
niques for solving the inverse problem of finding a function,
given its rate of change, as will be seen in the next two
lessons. )

Differential calculus has been applied previously in
this text to the following topics: velocity, acceleration~

nuclear decay, and reactor power growth. To illustrate the
general applicability of calculus, a few of the most common
differentia[ equations from the fields of mechanics, electri­
city, nuclear theory, heat and thermodynamics, and magnetism
are listed in Table 1. (A differential equation is simply an
equation involving at least one derivative.) Trainees will
have seen many of these rate-of-change statements in non
calculus form in previous courses.

Note that "til represents time througholl,t Table 1.

- 1
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TABLE 1

Some Common Differential Equation's' of Science

Differential Equation Defini tion of Variables

F
dv

F is force= In Cit
In is mass

(Newton's Second Law) v is velocity

dS W is angular velocity
W = dt S is angular displacement

a dw a is angular acceleration= dt w is angular velocity

T = I dw = Ia T is torqueerr I is moment of inertia
w, a as above

F = - ~~p F is force
Ep is potential energy in a central

force field as a function of r,
the distance from the center of
force (eg I gravity I Coulomb
electric forces)

p dW p is= dt power
W is energy converted or work done

i ~ i is electric current= dt q is charge

i e = C
dVe i e is capacitor current flow
crt C is capacitance of capacitor

Ve is capacitor voltage
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Differential Equation Definition of Variables

VL ~ L
diL VL is inductor voltage
at L is inductance

i L is inductor current

dN
-AN N is ntunber of radioactive nuclei

at = remaining at time t
A is the decay constant

dA
-AA A is radioactive source activity

dt =
A as above

dN -LX Attenuation of nuclear radiation:
dx

~

projectilesN is number nuclear
(neutrons, 1"5, SIS, etc)
having penetrated to depth X

L is macroscopic cross section of
attenuating material

dP ~k P P is reactor power
at ~

L 6k is reactivity

d 6k L is mean neutron lifetime

dt ~n P ~

L

e 1 dQ e is specific heat capacity of a= mCIT substance
m is mass of substance
Q is quantity of heat stored in

substance (in joules)
T is temperature of substance ('A)

dQ e6T dm 6T is temperature difference
at = dt (assumed constant in this

equation)
Q, m, e as above

- 3 -
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Differential Equation Definition of Variables

H -kA dT H is the heat flow rate through a=
d" medium ( ~)

S
k is the thermal conductivity of the

medium
A is the cross sectional area of the

medium
T is the temperature (0 A)

" is the penetration depth into the
conducting medium

dV nR p is pressure
dT = P (0 A)T is temperature

n is number of moles
(Ideal Gas Law) R is gas constant

V -N dO V is the voltage across a coil= dt N is number turns in the coil

• is the magnetic flux through

(Faraday I 5 Law) the coil

- 4 -



221. 20-5

II Some Instruments Which Differentiate

1) A vibrometer gives the rms velocity of a vibration. This
is the average value of the square root of the square of
the derivative of the displacement of the pick-up attached
to a vibrating object. A second output from the vibrometer
gives the acceleration (derivative of the derivative of
the displacement) of the vibration.

2) A magnetic phone cartridge delivers a voltage whose amp­
litude is proportioanl to the time derivative of the
displacement of the stylus.

3) An accelerometer is a transducer that provides an output
voltage proportional to the acceleration of some object.
This voltage is produced across a piezoelectric crystal.

4) An operational amplifier in the differentiating mode
produces an output voltage proportional to the derivative
of its input (see Figure 1).

t

t

Figure 1

- 5 -
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III Derivative Control Mode

Negative feedbaok is used to control process parameters
such as pressure, flow, temperature, reactor power, etc.,
to set point. The difference between the set point and
actual measured vatue is called the error. For example,
suppose the fluid level in the tank of Figure 2 is to be
controlled at the set point. The flow demand from the
bottom of the tank is variable, and the level is maintained
at the set point by manipulating the inflow rate via the
inlet control valve. The level measurement is supplied to
the controller by the level transmitter (LT). The con­
troller establishes the difference between this measured
value and the set point, ie, the error, and sends a control
signal to the control valve actuator. This control signal
always manipulates the inflow to the tank in such a way as
to reduce the error, ie, if the level is below set point,
the controller opens the inlet valve, and vice versa.

If the control signal (CS) is directly proportional
to the error, e, control is said to be proportionaZ, ie,

and b is the constant equilibrium
bias



Set
Point

~ A

control .'\
Signal

/'
Controller - - -

Measured - -
Value - - -

0) - -
- - -

.

221.20-5

Demand

Figure 2 Tank Level Control Loop

- 7 -
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The disadvantages of proportional control are:

(1) The controller cannot begin to take corrective action until
after an error is establishede Because of time lag in the
control loop, this often leads to considerable 'overshoot t

in corrective action (see Figure 4) , with process instab­
ility while the controller 'hunts' for the correct control
signal to match inlet and outlet flows.

(2) No control signal (other than equilibrium bias) is possible
without an error. For example, if demand increases, the
level must fall sUfficiently below set point that the control
signal, {CS)p, can match inflow and outflow. The amount by
which the level must remain below set point in order to
keep the flows matched (see Figure 4) is called the offset.

The first of the above disadvantages can be counteracted
with the use of the derivative control mode; the second disad­
vantage is overcome with the use of the reset aontrol mode (see
221.30-2, section VIII). A derivative controllerts output is
proportional to the rate at which the level is straying from
set point, ie, to rate of change of the error:

Graphically speaking, the derivative mode control signal is
proportional to the slope of the tangent to the error-time curve.
In practice, derivative mode control is usually used in con­
junction with proportional mode, so that the control signal is
made up of proportional and derivative components:

The rate signal, g~, can be obtained by passing the error

signal e{t) through a differentiating amplifier.
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The proportional and derivative components and the total
output signal from a proportional-derivative controller are
shown in Figure 3 for two hypothetical examples of level fluc­
tuations in the tank of Figure 2. (NS: assume that demand
varies such that the level fluctuates as shown in spite of
feedback). In Figure 3(a), the tank level drops linearly from
set point to a lower value, and in Figure 3(b), the level makes
a temporary excursion below set point. Note that a few repre­
sentative tangents have been drawn on the error curve of
Figure 3(b), and that the derivative component of the control
signal correlates with the value of the tangent slope at every
instant in both Figures 3(a) and 3(b).

Note that in both Figures 3(a) and 3(b), as soon as the
level starts to drop, the controller immediately puts out a
signal via the derivative mode component to open the inlet
valve. The amplitude of this signal is proportional to the
rate at which the level is dropping. This is in contrast to
the proportional mode component, which becomes significant only
after the error grows significantly. Thus derivative control
builds an 'anticipatory' feature into the control loop. In
fact, an output proportional to the lresent rate of error growth
is actually the same output that wou d be produced by the prop­
ortional mode at some later time (how much later depends on the
constant, kD), assuming that the error~e to continue to grow
at the sarne rate in the meantime. Graphically speaking, the
derivative mode controller extrapolates a certain number of
seconds along the tangent to the error-time curve.

- 9 -
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Tank
Level

t

component

errorconstant~
I
I
I

I /proportional

r-t---~------:;:-----:t-==t-r~~::========t~~j~Derivative Component
Proportional and Derivative

Contro
Signal

(a)

Tank
Level

1'----.,.:---,.-------.,..----- t

t

component

o

CDerivative
~­

~-

""

de _
dt - 0

__-~-proportional

---"""---

de
dt

Contro
Signal

(b)

Proportional and Derivative

Figure 3 proportional and Derivative Control Signals
for Hypothetical Tank Level Fluctuations

- 10 -
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Figure 4 shows typical fluctuations in level following a
step increase in demand

Ca) without any feedback control - the level drops at a
constant rate

(b) with proportional control - the level drops to offset
value, overshoots, oscillates, and eventually settles
out at offset value

(e) with proportional plus derivative control - the level
stabilizes to the same offset value more rapidly,
with reduced overshoot.

To summarize, the advantage of derivative mode control is
that corrective action is initiated before a large error is
established, and faster stabilization is achieved with smaller
deviation from set point following process transients. Arguments
analogous to the preceeding discussion of tank level control
indicate similar advantages to using derivative control mode in
controlling reactor power, boiler level, moderator temperature,
etc., in CANDU plants.

- 11 -
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Demand

Level

(al

Level

(b)

Level

(c)

Offset

proportional only Control

Proportional and Derivative Control

- 12 -

Figure 4 Tank Level Fluctuations Following a
Step Demand Increase
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ASSIGNMENT

1. write a verbal rate-af-change statement corresponding to
each differential equation in Table 1 of this lesson.

2. practice writing the differential equations corresponding
to the rate-of-change statements given in section 221.40-4
in answer to question #1 above.

3. A solenoid moves a plunger s meters in t seconds according
to the relation

set) = 2t' + 0.02t

If the plunger mass is 0.05 kg, calculate the force exerted
on the plunger at t ~ O.Ols.

4. (a) Write the differential equation corresponding to the
following rate-af-change statement: "The voltage V2
induced in coil #2 equals the product of the mutual
inductance M between coils #1 and #2 times the rate
of decrease of the current i 1 through coil #1".

(b) If M = 2 henries and II = 3t2
- t 3 amperes, calculate

(i) v,ct) , (ii) V, (2) •

- 13 -
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5~ The following diagram depicts a hypothetical variation in the
tank level of Figure 2. On the same time axis, sketch the
following for a proportional-derivative controller:

(a) proportional component of control signal
(b) derivative component of control signal
(e) total output signal.

Tank
Level

Set Point
t

6. The following diagram depicts a step decrease in the demand
flow from the tank of Figure 2. On the same time axis,
sketch typical corresponding fluctuations in tank level in
the following cases:

(a) no level control
(b) proportional only level control
(e) proportional-derivative level control

Label the offset in (b) and (e). Assume level was at sP-t
point prior to demand change. c

Demand

t

L.C. Haacke
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Mathematics - Course 221

THE INTEGRAL

I The Indefinite Integral

If Flex) = f(x), then f(x) is the derivative of F(x),
and F(x) is an antiderivative of f(x). The process of
finding f(x) from F(x) is called differentiation~ whereas
the process of finding F(x) from f(x) is called integration.
Thus differentiation and integration are opposite processes:

Example 1

F(x)
differentiation,

......... integration
f (x) ~ F' (x)

x 2 is an antiderivative of 2x since

In fact, any function of the form F(x) = x 2 + C is an
antiderivative of f(x) = 2x since

a% (x' + C) ~ 2x

"C" is called an integration constant.

d
dx C ~ 0)

Graphical Significance of Integration Constant

The ~raphical significance of the integration constant C
is that x + C represents a family of curve8~ each value of C
corresponding to a unique member of the family (see Figure 1)_
Note that every member of the family has precisely the same
slope at any particular x-value, say Xl_

February 1979
- 1 .



y = X 2 + C y

c ~ 3

C = 2

C ~ 1

C = 0

C = -1
C = -2

C = -3

C ~ -4

x

Boundary Condition

Figure 1

- 2 -

Integration may be regarded as the process of finding a
function (curve) from its derivative (slope). As Figure 1
illustrates, there is always an infinite family of curves
having the given slope.

An integration has a unique solution, however, if a
boundary condition is imposed.

DEFINITION: A boundary condition is the specification of
the value of the integral at a particular
x-value.

The graphical significance of imposing a boundary
condition is that a point is specified on the solution
curve, and thus a unique curve is selected from the
infinite family as the solution.

Example 2

Find the antiderivative of f(x) = 2x, which has
the value 5 when x = 2.
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Solution

The required antiderivative has the form

F(x) = x 2 + C (from Example 1)

However, the boundary condition,

F(2) = 5 ~> (2)2 + C = 5

C = 1

F(X) = x 2 + 1

Note that the boundary condition in Example 2
selects the curve corresponding to C = 1 in Figure 1.

Integral Notation

nThe integral of 2x with respect to x equals x 2 + ell

is written symbolically as follows:

j2x dx = x 2 + C

integr,{ '""; --'\ .'" "-...... integration
. dlfferentlal~

slgn t'd' .integrand an 1 erlvatlve

constant

indefinite integral

Where:

- the integra"L sign is read "the integral of"

- the integrand is the function being integrated

- the differentiaZ "dx" indicates integration wrt x

- the antiderivative and integration constant together
comprise the indefinite integraZ of 2x wrt x.

- 3 -
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In general, the derivative of F(x) wrt x equals f(x) if
and only if the integral of f(xl equals F(x) + C

ie,

1__F
_'_{_Xl_=_f_(X_)_(::_=_=_~_>_J_f_(X_'_d_X_=_F_{_X_l_+_c_l

Example 3

II Displacement, Velocity and Acceleration

v (t) = s 1 (t) <:==~) s (t) = J v (tl dt

art) = v' (t) (: >v{tl = r a{t)dt

Example 4

Find vet) and set) given aCt) = -10, and the
boundary conditions, v(O) = 0 and 5(0) ~ 100.

Solution

vet) = J a(t)dt

= J -lOdt

::> -lOt + C1

But yeO) = 0 ~> -10(0) + C, = 0

. . C 1 = 0

v{t) = -lOt

- 4 -

s (t) = f v(t)dt

= f -lOt dt

= _St L + C,

But s(O) = 100 => -5 (0)' + c, = 100

C, = 100

s (t) = _St 2 + 100
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III Integration Formulas

The following is a table of integration formulas with
corresponding differentiation formulas studied in lesson
221. 20-2.

DIFFERENTIATION FORMULA CORRESPONDING INTEGRATION FORMULA

d C 0 J Odx C
dx = =

d n-l n+1
x n = f xndx x + C, n #:- -1ax nx = n+T

d (f (x) g (x) ) d
J(f(x) g(x) )dx !f(x)dxdx

± = dx f (x) ± =

± e& g (x) ± Jg(x)dx

....9. e f (x) = ef (x) f' (x) Jef (x) f'(x)dx = ef (x) + Cdx

Example 5
20

Jx dx

21
X= + C'2I

Example 6

!rrx 5dx = TIfx 5dx

x' C)= TI(6" +

TI
,

= 6" x + C, (C , = TIC)

- 5 -
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Example 7

J(x' + lX)dx = !x 3 dx + JIX dx

x'
'''';

+ c, + X ' + C,= 4 372

1 , 2 Y,
= .x + -x ' + C3

Example 8

x' - 1 x' !) dxJ dx = J(- -
IX IX IX

, -,
= f (x~ - x y,) dx

,
JX-~dX= Ix /'i dx -

~ >-;
x ' x ' C,)= m + C, - (m +

2 X 2IX + C= -x ' +5

(C=C,+C,)

(C=C,-C,)

Note that the integrand in this example was expressed
in terms of functions of the form x n prior to integration;
since no method of integrating a quotient of two functions
has been given.

Example 9

x 2 x 2

f2xe dx = e + C

Note that this integral is of the form Je f (X)f 1 (x)dx
where f(x) = x 2 and f1 (x) = 2x.

Example 10

- 6 -

If v(t)
-t= IDe + t, find s(t) assuming 5(0) = O.
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Solution

6(t) = fv(t)dt

= f(lOe- t + t)dt

= flOe-tdt + ftdt

= -10 fe-t(-l)dt + ftdt

-t t2.
= -lOe + ~ + C

But 6(0) = 0 => - lOeo + 0'
~

+ C = 0

ie, -10 + C = 0

ie, C = 10

6 (t) = -lOe- t + t'
~

+ 10

Note that "-10" rather than 10 was factored out
of the first integrand in line 4 of this solution so
as to leave a factor of (-1) in the integrand, which
i6 of the formef(t)fL(t) where f(t) = e-t and fL(t)
= -1.

IV Area Under a Curve

Let A(Xl) represent the area under the curve y = f{x)
from x = a to x = Xl_ Then A(XI + ~x) represents the area
from x = a to x = Xl + ~Xf and A(XI + fix) - A(Xl) represents
the area under the curve between Xl and Xl + fix, as labelled
in Figure 2.

- 7 -



y y = f (x)

A(X, + fix) - A(x,)

A(x, )

x
a x, z x, + fix

r-- fix -.j

Figure 2
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Obviously, for some value of X, say x = 2, Xl ~ Z ~ Xl + ~x,

the area of the rectangle ~x units wide by £(z) units high exactly
equals the area A(XI + ~x) - A(Xl) under the curve,

ie, A(XI + fix) - A (Xl) = f(z)fix

A(XI + fix) - A(x,l f (z)=fix

A (Xl + fix) - A (x I)lim = lim f(z)
b.x-+O 6x .6.x+O

The LES of this equation is the derivative, Al (xd-, by
definition (see lesson 221.20-2).

Furthermore as .6.x+O, Z+Xl (see Figure 2) .

A' (x,) = f(X,)

Finally, since the value of Xl is arbitrary, it can be
replaced by the variable x.



Thus A' (x) = f(x)

221. 30-1

ie, the derivative of the area function equals the
curve function.

IA(x) = ff(x)dx = F(x) + C

Example 11

Find the area under the curve y ~ 5 from x = 0 to
(a) x = x, (b) X = 1 (e) x = 10.

y

solution
5 A(l)

(a) A(x) = ff(x)dx

~ f5dx

= 5x + C

But A(O) = 0 -> 5(0) + C = 0

c ~ 0

y = 5

A(10) "
x

5 10

Figure 3

(b) AU) = 5(1) = 5

(e) A(10) = 5 (10) = 50

Note, with reference to Figure 3, that the above
areas are rectangular, and that the same answers are
obtained by using "area = length x width".

Example 12

Find the area under the curve y = 2x from x = 0
to (a) x = x, (b) x = 1 (e) x = 10.

- 9 -
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Solution
y

A(xl = ff(x)dx 2xy =
20 (10,20)= f2xdx

= x' + C

0'
10

But A(O) = 0 => + C = 0
,

0
A(10)

C =

x' xA (x) =
5 10

(a) A(x,) =
, Figure 4Xl

(b) A(l) = l' = 1
=

(cl A(101 = 10' = 100

Note, with reference to Figure 4, that the above
areas are triangular, and that the same answers are
obtained using "area = } base times height".

Example 13

Find the area under the curve y = x 2 from x ~ 0
to (a) x = 5 (b) x = 10.

solution

A(x) = fx'dx

y

100 (10,100)

I - 10 -

x'= + c"3

But A (0) 0
0'

+ C 0= ~> "3 =

c = 0

A(x) x'= "3

50

" '~,
A (10) i,

,

~:B-=-......"'-'-:::'....j...1 x
5 10

Figure 5



( a) A(S)
125

= -r

221. 30-1

(b) A(10) 1000
= ---r

v The Definite Integral

The procedure for calculating areas illustrated in
examples 11 to 13 above can be •streamlined' considerably
by using the definite integral notation, which effectively
'builds in' the boundary condition.

Recall that the area under the curve y = f(x) from
x = a up to x = x is given by

A(x) = ff(x)dx = F(x) + C

But A(a) = 0 ~> F(a) + C = 0

. . C = -F(a)

A(x) = F(x) - F(a)

the area under the curve between x = a and x = h,

A(b) = F(b) - F(a)

The definite integraL
represent F(b) - F(a).

notation fb f(x)dx is used to
a

ie, b
A(b) = f f(x)dx = F(b) - F(a)

a

In this notation "a" and "b" are called the towel" limit
and upper Zimit~ respectively, of the integration.

Examples 11 and 13 will now be redone using definite
integrals:

Example 14

Find the area under the curve y = 5 between x = 0
and (a) x = x, (b) X = 1 (e) x = 10.

- 11 -
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Solution
X,

(a) A(xd = f 5dx
o

X,
= 5xl

o

= 5x, - 5 (0)

b
The notation F(x) 1 is used above to indicate the

a
explicit form of the antiderivative, which is to be
evaluated between the limits a and b.

(bl A(l)
1

= f 5dx
o

1
= 5xl o

- 12 -

= 5 (1) - 5(0)

= 5

10
(e) All0) = f 5dx

0

10
= 5xlO

= 5 (10) - 5 (0)

= 50
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Example 15

Find the area under the curve y = x 2 from x = 0
to (a) x = 5 (b) x = 10.

Solution

(a) A(5)
5

= f x 2 dx
0

x' I:= "3

5' 0'= '3 - "3

125= """3

10
(b) A(10) = f x 2 dx

0

10
x'

10
= "3

10' 0'= -3- - "3

1000= -r

- 13 -
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ASSIGNMENT

1. Differentiation and integration are opposite processes, yet
the derivative is unique whereas the integral is not, in
general. Explain why this is so.

2'~ Why is a boundary condition necessary to obtain a unique
solution to an integral? Explain with reference to graphical
significance of boundary condition.

3. Evaluate the follQ\\ling indefinite integrals:

(a) f-3xdx (b) fret + t')dt

IX
( e) f(2x' + 3x - 5)dx (d) f ~ dx

IX
2

+ tY,)dt(e) f(4x' - rx)dx ( f) f(2te- t

4. Find displacement and velocity functions s (t) and v{t),
respectively, given acceleration function a(t) and boundary
conditions as follows:

(a) a (t) = 0, vIOl = 0, s ( 0) = 0

(b) a{t) = 2, v (0) = 10, s (0) = 14

(e) a{t) = 2t, v (0) = V, , s(O) = 0

(d) a (t)
-t

v (0) 10, s(O) -10= e = =,

5. Find the function which gives the vertical displacement of
a projectile relative to ground level, neglecting air
resistance. The acceleration due to gravity is 9.8 m/s z
downwards. Assume the projectile is given initial velocity
Va mls vertically upwards from ground level.

- 14 -
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6. Find the area under the curve y = f (x) between a and b
where

(a) f (x) = 2x, a = 1, b = 10

(b) f(x) = rx, a = 4, b = 16

( c) f (x) = x' + 4, a = -2, b = 5

(d) f(x) -x' 0, b 2= xe , a = ~

7. Evaluate the following definite integrals:

(a)

(b)

(c)

1
9 rx (x - l)dx

1

o
£5 (-5x + 3)dx

26 (10 + t - et)dt

L.C. Haacke

- 15 -
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Mathematics - Course 221

APPLICATION OF THE INTEGRAL AS AN INFINITE SUM

I Area Under a Curve

Suppose the x-interval from x = a to x = b is partitioned
into n subintervals of width

6x = b - a
n

Then the area under the curve y = f(x) between x ~ a and x = b
is approximately the same as the area of the n inscribed rect­
angles corresponding to these n subintervals, as shown in
Figure 1.

y

a

1
2

•3 .' "A'-,

b

= f (xl

x

Figure 1

In Figure 1, if xi is the x-value at the left boundary
of the i th rectangle, then f(xi) is the height of the i th
rectangle, and the total area Ar of the n rectangles is

- 1 -

April 1980
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This sum can be abbreviated using sigma notation as
follows:

n
E f(xi)6x

i=l

The RHS of this equation is read "the sum of f(xi)6x as
i takes all (integral) values from 1 to n inclusive".

As can be seen from Figure 2, which shows the interval
of Figure 1 partitioned into n = 4, S, 16 subintervals, the
larger the number n of rectangles, the closer Ar is to the
true area A under the curve. In fact,

A = lim Ar
n+oo

n
ie 1 A ~ lim E f(xi)6x

n+oo i=l

But, from lesson 221.30-1,

b
f (x) dxA = !

a

b n b
! f(x)dx lim E f(xi)!::.x, 6x - a= =
a n+oo i==1 n

ie, the definite integral can be regarded as the sum of an
infinite number of infinitely narrow rectangles. Note that
as i ranges from 1 to n in the sum, x ranges from a to b in
the integral. In fact, the integral sign was originally
introduced as a stretched "s" standing for "sum".

This notion of the definite integral as an infinite
sum of vanishingly small increments is extremely useful in
a wide range of applications, a few of which will be dis­
cussed in this lesson. The above result is often referred
to as The Fundamental Theorem.

- 2 -



y

a b

221. 30-2

y = f (x)

(a) n = 4

x

y

a b

y = f (x)

(bl n = 8

x

y

.....

a

Figure 2

b

y = f (xl

(e) n = 16

x

- 3 -
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Example 1

Find the area enclosed bet'vJeen the curves of y ;: x 2

andx=y2.

solution

A large, clear diagram showing a representative
rectangular slice of the required area is mandatory in
the solution to SQch problems.

y

x =" y~

yz - y 1

Figure 3

Clearly, from Figu1.·~ j, the Limits of integration
will b02 the x-values \1here the t .....'o curves intersect.
These values ar~ found by solving tl::.e ':WQ equations
x = y~ and Yl = x 2 :

ie,x"-x

ie, x(x' ) i = OJ

- 4 -

x = 0 0'..... x --
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The required area, A = lim E(Y2 - Yl)~X

n+~

n
= lim E (/xi - xi 2 )6x, AX =

n+o::l i=l

1 - 0
n

1
= ! (IX - x')dx

x=O
(by Fundamental
Theorem)

=

2 1
= 3 - 3 - (0 - 0)

1= 3 square units

To illustrate the versatility of this technique
the same area will be calculated again, this time
using horizontal slices as shown in Figure 4;

y

Figure 4

- 5 -
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A = sum of horizontal slices

~ lim E(X2- xd 6y
n+=

n 1 0
lim E (/Yi - YiZ)IJ.y, -

~ 6y =
n+= i=1

n

1
= r (/y - y' ) dy

yooO

= [~ ~ L ]:y 3

2 1
= :3 - :3

1 units before.= :3 square as

Example 2

Find the area bounded by the parabola y = x 2
- 8x + 7"

the x-axis, and the lines x = 2 and x = 6.

Solution

y

-4

-8

N '"
" " x'y = - 8x + 7
x x

x
1 7

- 6 -

6x

Figure 5
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n
A = lim l: (0 - y.) 6x (see Figure 5)

i=l ~n+oo

n 6 - 2
= lim l: (-xi 2 + 8xi - 7)6x, 6x = nn+oo i=l

6
= ! (_x 2 + ax - 7) dx (by Fundamental Theorem)

x=2

6

[ X' + 4x 2 7x
] 2

= - j -

[- 6' 4 (6) 2 7(6) ] [ 2' + 4(2)' 7(2)]= 3" + - - - '3 -

30 - [- 2 ]~

'3

= 30 2 square units.'3

II Calculating Averages

Recall that calculating an average involves dividing a
sum of parts by the number of parts (cf lesson 321.30-1).

Example 3

Find the average of the following lengths: 2.10 ro,
95 em, 123 ern, 4.20 In.

Solution

Average length 2.10 + 0.95 + 1.23 + 4.20=
4

= 2.12 m

It is often necessary to calculate a weighted
average, as in Example 4.

- 7 -



Example 4

During a two-year period, the annual inflation rate
averaged 8.4% during the first year. During the second
year, the rate averaged 9.2% over the first quarter, 9 •. 8%
over the second quarter, and 10.2% over the second half.
Calculate the mean rate over the two-year period.

Solution

The variation of the inflation rate R is shown in
Figure 6.

R(%) 15

t (years)
21

5

10t-__,--.;~----:,,,,,,,,

Figure 6

Average
Inflation =
Rate R

1.00 x 8.4 + 0.25 x 9.2 + 0.25 x 9.8 + 0.50 x lO.2

2.00

= 9.1%

Note that the above calculation is equivalent to dividing
the area under the graph of Figure 6 by the total time
interval:

R = area under R - t ~raph

total t-interval

This latter approach is useful in calculating
averages of continuously varying quantities.

- 8 -
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Example 5

The radiation dose rate from a certain radioactive
source decays exponentially with time according to the
formula,

where, Do = 500 mrem/h is the dose rate at t = 0, and

A = 7.6 x lO-~ 5- 1 is the decay constant of the
source activity.

Find (a) the average dose rate during the first 5 hours.

(b) the total dose received during the first 5 hours.

Solution

t (hours) 0 1 2 3 4 5

D(tl (mrem!h) 500 380 289 220 167 127

D (t)
(mrem!h)

400 D(tl = 500 e-0.274t

200
T

o l-....l,....l...l.+---+-_+---+-_ t (h)

2

Figure 7

4

- 9 -
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(a) Average dose rate = total dose received
total time

n
lim E Di~t
n+~ i=l

=
5

1
= 5" lim

n+~

~ 500e-)'ti~t
i=l

1
= - :IT

5 -At
! 500e (-).) dt

t=O
(by Funda­
mental
Theorem)

(b) Total dose

Example 6

= l~~ (e-0.274 x 5 _ eO)

= 100 (l _ e-1.37)
0.274

= 2.7 x la' mrem/h

= average dose rate x 5

= 272 x 5

= 1.4 x lOs mrem

= 1.4 rem

10 -

The number N{t) of radioactive nuclei surviving to
time t seconds is given by the formula

-AtN(t} = Noe ,
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Where No is the number of radioactive nuclei at t = 0
and A is the decay constant.

Find the mean lifetime of a nucleus.

Solution

N (t)

No

AN l..
T

o

-AtN,e

Figure 8

t

Average nuclear lifetime total lifetime of all nuclei
; total number of nuclei

n
lim E tiAN

~ n+~ i=l

No

1
==N;

No
f

N~O

tdN

The integration techniques necessary to evaluate
this integral have not been covered in this text.
Nevertheless, the answer is that the mean nuclear
lifetime, T, equals l/Ao Thus an alternative form of
the given equation is

N (tl ~ N e- t / T,o

- 11 -
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from which it is obvious that each time one mean nuclear
lifetime passes, the number of surviving radioactive
nuclei drops by a factor of e.

III Work

Recall from elementary mechanics that work W equals the
product of force F times displacement 5:

W = Fs

Example 7

The work done in lifting a 2 kg mass 5 rn against
gravity,

W = Fgs

= mgs (weight Fg = mg)
2

= 2 x 9.8 x 5 (g = 9.8 m/s )

= 98 J
=

In Example 7, the force is constant. When the
force is not constant, in general, the work must be
calculated by integration.

Example 8

The force F required to stretch a spring varies
as the spring extension X,

ie, F = kx, where k is the spring aonstant.

Find the amount of energy stored in a spring stretched
0.40 m, assuming k = 2.0 X 10 2 Nm- 1 •

Solution

The extension force F is plotted versus extension
x in Figure 9.

- 12 -
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F(N) 80
IF = 200x
I
I

40 I

T:
I

F· I
'1

0 x(m)
0.4

+If-
~x

Figure 9

The amount of work represented by the area of the
i th rectange in Figure 9 is

~Wi = Fi~X (Force Fi acts through ~x)

Total work W done in stretching the spring to
x = 0.4 m equals total area under F - s graph from
x = 0 to x = 0.4,

n
ie, W = lim E ~w·,

n+oo i=l

n
= lim E F . fix

i=l
,

n+oo

'"= f Fdx (by Fundamental Theorem)
0

0.4

= f kxdx
0

0.4
1

kx'i= "2
0

- 13
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~ ~ (0.4' - 0')

= 2.0 X 10' (0.16)
2

. .

= 16 J

16 J of elastic potential energy is stored in the
stretched spring.

IV Fluid Pressure

Recall from fluid mechanics that the pressure P exerted
by a fluid of density p kg/ms at a depth of h meters is given
by the formula.

P = pgh pascals,

where 9 = 9.8 m/s 2 is the acceleration due to gravity.

Example 9

For the trapezoidal hydraulic dam of Figure 10
(dimensions in meters) find the

(a) total force exerted against the dam face

(b) average pressure exerted against the. dam face

(e) center of pressure (0, y) exerted against dam
face, where

Mx
Y = Ft t and

~ fyPdA is called
x-axis" and

the moment of force about the

Ft ~ [PdA is the total force against the dam,

ie, the same moment would exist if F t were applied at
(0, y).

- 14 -
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Y

I
I"' 100 >1 (50, 30)

T T
.. Ihi I'" 2Xi

LAY
30 {-

Mi T

1 Yi
7

i.. x

(35, 0)

Figure 10

Solution

Total force Ft against dam equals sum of forces ~Fi

against rectangular increments,

n
ie, Ft = lim E l:lFi

n+oo i=l

n
= lim E P'AA', ,

n+oo i=l

n
= lim E (pghi) (2xiAy)

n+oo i=l
(Pi = pghi' AAi = 2xiAy)

n
= lim E pg(30 - Yil 2xi~Y

n+co i=l
(hi= 30 - Yil

= [30 pg(30 _ y) 2xdy
y=O

(by Fundamental Theorem)

In order to evaluate this integral, one must express
x in terms of y. This is done by first finding the
equation of the line representing the right boundary of
the dam in Figure 10, using the two-point form:

- 15
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ie,

Y - YI == Y2 - YI
X - xI X2 - Xl

y - 0 30 - 0
x - 35 = 50 - 3S

where (Xl' yI> = (35, 0)

and (x" y,) = (50, 30)

ie, 30(x - 35) = 15y

ie, x=!+35

Substituting for x in the above integral, one gets

"Ft =; pg(30 - y) 2(1 + 35)dy

"= pgf (30 - yl (y + 70)dy
o

"= pgf (2100 - 40y _ y')dy
0

pg[2100Y - r~ 20y' _L
3

0

10' x 9.B [2100 x 30 - 20(30)' - 30' ]= -r
= 3.5 x 10' N

P = total force on dam
(b) Average pressure on darn total area of dam

3.53 X 10' N
=

~(100 + 70) 30 m'

== 1.4 X 10 5 Pa

= 0.14 MPa

- 16 -
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Note: (1) Dam area was calculated using formula for area
of a trapezoid,

1A = 2(51 + s2)h, where 51, 52 are the lengths

of the parallel sides, and h is the perpendi­
cular distance between them.

(2) For comparison with above result for P, the
pressure at half-depth (15 m) is

pgh = 10' x 9.8 x 15
= 0.15 MFa

P is slightly less than this because the dam
widens towards the top, ie lower pressures are
exerted on the wider slices. If the dam had
vertical boundaries, P would equal the pressure
at half depth.

( c)
Mx

Y = Ft
where Ft = 3.53 x 10 5 Pa from (a), and

30
Mx = f yPdA

y=O

= f "ypgh 2xdy
0

"= pgf Y(30 y) (y + 70)dy
0

"= pgf (2100y - 40y2 - y') dy
0

pg[1050y2 "=
40 , -f]- 3"Y

0

= 10' X 9.8[1050(30)2 iQ( 30) , 30' ]3 - -r

= 3.75 x 10 9 Nm

y = 3.75 X 10' Nm
3.53 x 10 8 Nm- 2

= 11m
=

.
centre of pressure against dam is at (0, 11). .
relative to axes of Figure 10.

- 17
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V Other Applications of the Fundamental' Theorem

Applications of the Fundamental Theorem are numerous in
science and technology. A few more examples are listed below,
but it is beyond the scope of this course to treat them in
detail.

('1) Finding the volume of 3-dimensional entities by parti­
tioning the volume into increments such as cubes, slices,
or shells.

(2) Finding the center of mass of 3-dimensional entities of
either homogeneous or variable densities.

(3) Finding the average neutron flux in reactor cores of
various geometries.

(4) Finding moments of inertia of plane or 3-dimensional
entities about an axis of rotation

(5) Finding surface area of 3-dimensional figures.

VI Familiar Instruments Which Integrate

By considering the integrating functions of certain
familiar instruments, the trainee will consolidate his con­
cept of integration, and better his chances of understanding
the same function performed by other (perhaps less familiar)
instruments.

(1) The watt-hour meter integrates the power P flowing to
the consumer with respect to time, thus obtaining a
record of electrical energy consumed, ie, it is effectively
finding the area under the P-t curve (see Figure 11).

p(watts)

t (hours)

Figure 11

- 18 -
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(2) A natural gas meter integrates the volumetric flow rate
to the consumer, thus recording total volume consumed
(see Figure 12).

Gas Flow Rate
(rn 3 /min)

o

area = volume gas consumed (m 3 )

t (minutes)

Figure 12

(3) The meter on 'a service 'st'atio'n' ga'soline urn integrates
flow rate 0 gaso lne aWlng lnto t e consumer's gas
tank, and records the total volume purchased, ie, it
gives the area under the curve of Figure 13.

Gasoline Flow
Rate

(~/min)

o

Figure 13

t(min)

- 19 -
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(4) Whereas the speedometer on a car gives the rate of
change of distance with time, the odometer integrates
this rate to give the total distance, ie, it gives the
area under the speed-time curve (see Figure 14).

Speed
(km/h)

t(h)

Figure 14

(5) A radiation dosimeter integrates the dose rate to
record the total dose received, ie, it gives the
area under the dose-rate-time graph (see Figure 15).

Dose Rate
(mrem/h)

t(h)

Figure 15

- 20 -
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(6) An operational amplifier in the integral mode yields an
output which is proportional to the integral of its
input (see Figure 16).

c

Input

R

-- Output

Figure 16

VII Integration in Sci'shce and 'technology

Just as differential calculus provides the notation for
writing and techniques for deriving the rate of change of one
physical quantity with respect to another, given the one as
a function of the other, so integral calculus provides the
notation for writing and techniques for deriving a function
from its rate of change. Every differential equation listed
in Lesson 221.20-5 can be rewritten as an integral,

ds -> fvdteg, v = at s = ,

dP IJk P P flJk pdt,
dt = L ~> =

L

dV nR V fnR dT etc.OT = p ~> = P ,

- 21
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VIII Reset {Integral} Control Mode

Recall (lesson 20-5) that the control signal, (CS}p,
from a proportional controller is proportional to the
error, e (difference between measured value and set point
of contrOlled parameter) :

(CS)p = kpe (+b). kp a con6tant and

b is the equilibrium bias

One disadvantage of proportional control is offset the
deviation from set point required merely to generate the
required corrective control signal. For example, the tank
level in Figure 17 would be offset from set point follow­
ing any change from equilibrium demand (see lesson 20-5).

This undesirable offset can be eliminated with the
use of reset eontroZ, for which controller output (CS)I
is proportional to the integral of the error signal, e{t):

kr a constant

Reset control drives the error to zero, ie, returns tank
level to set point, because (CS)I keeps changing and
varying inflOW until e = o. The required integral signal
for reset control, fedt, is obtained by passing the error
signal through an integrating amplifier.

- 22 -
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Control
Signal ,\

controller~ - - -

Measured - -
Value - - -

LT ~ - -

- - -
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Demand

Figure 17 Tank Level Control Loop
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In practice, proportional and reset control are usually
used together:

Figure 18 illustrates the concept of proportional and
integral control signals for two hypothetical fluctuations in
the tank level of Figure 17. (NB: assume that demand varies
such that the level fluctuates as shown in spite of feedback.)
In Figure 18{a) the level drops linearly (from set point) to a
new value; in Figure la(b), the level fluctuates temporarily
below set point. The reader should convince himself that the
value of the reset component of the control signal at any instant
is proportional to the area under the error-time curve up to
that instant in both Figures 18(a) and 18(b).

Figure 19 illustrates typical fluctuation in the tank level
of Figure 17 for proportional-only control, and for proportional­
plus-integral control, following a step increase in demand. Note
that offset is eliminated with the introduction of reset control.
Similarly, reset control can be used to eliminate offset in
controlling reactor power, boiler level, moderator temperature,
etc., in a CANDU station.
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Tank
Level

fedt

error

t

(al
Contro
Signal

Tank
Level

and Proprotional

(b) Contro
Signal

Set Point Jedt

........ .
......... I/Reset :

.......c;:.. ..~Proportional............ ...',..,.t.. .....,. _
.'................

t

t

Figure 18 Proportional and Reset Control Signals for
Hypothetical Tank Level Fluctuations
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Demand

t

Tank
Level

Set Point
t

Offset

Tank
Level

Proportional only

Set Point t

- 26 -

Figure 19 Tank Level Fluctuations Following
Demand Increase
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ASSIGNMENT

1. Find the areas bounded by the following. Make large, clear
diagrams showing the representative rectangular area incre­
ment in each case.

(a) the x-axis and the curve y = x 3 - 6x 2 + ax

(b) the parabolas y = 6x - Xi and y = x 2 - 2x

(c) the parabola y' ~ 4x and the line y ~ 2x - 4.

2. The radiation dose rate D(t) mrem/h after t hours is given
for a certain work location by the expression

D(t) ~ 600e-0 . 8t

(a) Plot a graph of D(t) vs t for 0 < t < 5

(b) Calculate (i)
(ii)

the total dose
the average dose rate

received during the first 4 hours.

3. The voltage Vet} after t seconds, across a capacitor of
capacitance C farads, as it discharges through a resistor
of resistance R ohms, is given by

Vet} ~ voe-t / RC ,

where Vo is the capacitor voltage at t = O.

Recall that electrical power P dissipated in a resistor is
given by

v'
P ~ R

(a) Find a mathematical expression for the average power
dissipated in a resistance R which drains a capacitance
C for T seconds~

(b) Suppose a capacitor voltage is restored to 6.0 volts
every 2 ms, and the capacitor discharges through a
20 n resistor during the 2 ms. If the capacitance is
100 Vf, select an appropriate power rating for the
resistor from the following:

I I
~, ~,

I¥'I, lW, 2W, SW, lOW.

- 27 -
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4. A lead ball is dropped by a parachutist while descending at
6 mis, from a height of 1000 m above the ground. The
acceleration due to gravity is 9.8 rn/s 2 • Neglecting air
resistance, find the

(a) velocity and displacement functions

(b) time required for the ball to reach the ground

(cl average velocity of the ball during its descent

(d) average height of the ball above ground du~ing its
descent

5. Find the amount of work done in stretching a spring from an
extension of 0.15 m to an extension of 0.35 m if the spring
constant k = 2.4 X 10 2 Nrn- 1 •

6. The boundary of the parabolic dam illustrated below follows
the curve

x'
y = 100

relative to axes as indicated.

Find the

(a) total force exerted against the dam

(b) average pressure exerted against the dam

(e) center of pressure exerted against the darn

YI Water Level

100 m

1< x'
2xi = 100..£

bY!

J------=--.----4r---~--.. ----~ --- ----- x

25 m

- 28 -
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7. The following diagram depicts a hypothetical variation in
the tank level of Figure 17. On the same time axis, sketch
the following for a proportional-reset controller:

(a) proportional component of control signal
(b) reset component of control signal
(e) total output signal.

Tank
Level

Set Point1--__---''-- t

8. The following diagram depicts a step decrease in demand
flow from the tank of Figure 17. On the same time axis,
sketch typical corresponding fluctuations in tank level in
the following cases:

(al no level control
(b) proportional only level control
(0) proportional-reset level control.

Assume level was at set point prior to demand change. Label
the offset in (bl.

Demand
~__,.- t

L.C. Haacke

- 29 -
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Mathematics - Course 221

APPENDIX 1: REVIEW EXERCISES

Review Exercise #1: Reliability

1. A system of 12 dousing valves, tested monthly, has developed
10 failures of individual valves in 8 years' operation.
Calculate the unreliability of an individual valve.

2. Calculate the annual risk of a nuclear incident at a reactor,
which, during 9 years'operation, developed the following
faults:

(a) 3 unsafe failures of the regulating system.

(b) 50 complete failures of the protective system, failures
of which are detected and corrected at the beginning
of each shift.

3. At a certain nuclear generating station, three independent
divisions of equipment protect against nuclear accidents:

(i) process equipment with a failure frequency of 0.3
per annum,

(ii) protective equipment with unreliability of 2 x 10- 3
,

and

(iii) containment equipment with unreliability of 5 x 10-'.

'~alculate the annual risk (frequency) of

(a) an incident consisting of process failure combined
with simultaneous failure of either protective or
containment systems.

(b) simultaneous failure of all three systems.

4. Monthly testing of 6 safety switches has revealed 8 failures
of individual switches during 15 years' operation.

(a) Calculate the unreliability of a switch.

(b) How, without altering the equipment, could the
unreliability in (a) be decreased by a factor
of about 307

- 1 -
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4. (0) How often should the switches be tested if the permi£ted;
unreliability of a switch is 10- 2 ?

5.

I I
I B I

I A I cI I

I
0

I
I I

In the above system, a system failure consists of a failure
of either component A, or a failure of at least two of S,
C, D.

Calculate the unreliability of the system, given component
reliabilities,

QA = 0.05, and
QB = Qc = QD = 0.1.

6. A pump designed for continuous operation has failed 6 times
in 5 years' operation, with total down time of 124 hours.
Calculate the unavailability of

(al the pump

(b) a system of three such pumps in a 3 x 50% parallel
arrangement.
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Review Exercise #2 (Lessons 221.20-1, 421.40-2, 321.10-3)

1. Find the equation of the following lines in the xy-plane:

( a) passing through (2 ,4) and (3,1)

(b) passing through (-4,5) with slope 4
-"3

( c) with y-intercept -5 and slope ~

(d) passing through (4,-1) and parallel to 2x - 5y + 8 = 0

(e) passing through (6,-2) and perpendicular to 5x + 3y - 2 = 0
(f) passing through (-5,-3) with angle of inclination 135 0

2. Given f(x) = x 2 -2x + 5 evaluate (a)
(b)
(c)

f(O)
f (-5)
f(x + a)

3. Plot Y = x 2
- 2x + 5 and label the roots on the graph.

4. Find the slope and y-intercept of the following lines:

(al

(b)

6x - 5y + 8 = 0

2 4r;x + "j"Y - 1 = 0

5. For each line in Question 4 state the change in

(a) x corresponding to an increase of y by 2

(b) Y corresponding to an increase of x by 5

(c) corresponding to a decrease . f 1
Y ~n x a '2

- 3 -



Review Exercise #3 (Lessons 221.20-2, 3 and 321.10-4)

1. If s{t) = t' + 210

(a) plot s(t) vs t

(b) find the average velocity over the first 2 seconds

(t = 0 to t = 2)

(0) find the formula for the instantaneous velocity, v(t},
at time t, using

v (t) = lim :::s-'-(:::t_+.:.....:~"'ti")'----'S'-'('-'t"-)- lit
6 t-l-O

(d) find v(2). (Compare with (b»

2. Find v(t)

(a) .(t)

(b) s (t)

and a(t),

= -21t
= t 3 _ 4t

using differentiation formulas if

(find v(4»

(find v(5»

3. Differentiate with respect to x:

(a) 5x 3
- 2x + 13 (c) -x' +~x'

(b) 4rx' (d) x' - x

IX

4. Find

at

5. The

(a)

(b)

equation of tangent and normal to curve y = x 2 - 2x + 3

(a) x = -1 (b) x = 1

decay constant A for a radionuclide is 0.010s- 1

Find the activity of a 10 curie source after 2.0 minutes.

There are 3.7 x 10 13 radioactive nuclei to start with.
How many remain after 2 minutes?

6. Given that a radioactive source has decay constant

A = 1.2 x 10- 5 S-I, find the

(a) activity of a 10 Ci source after 20 hours

(b) half-life of the source

(c) time for a 10 Ci source to decay to 1 Ci

(d) number of raiiioactive nu.::lei in a 10 Ci source

- 4 -
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Review Exercise #4: Practice in Solving Quadratics

1. At what points is 2 the slope of the curve

x'
y =~ + X

2 -13x + 10?

2. At what instants does the velocity equal zero if

s(tl = Zt' +~ - lOt - 5?

3. At what x values are the slopes of the two curves equal?

(a) Yl = X 3 ~ Y, = x 2 + x

(b) 3x' + 19 ,
12 + 15x x'

Yl = 2 x ; Y, = - "3

4. At what instants are the velocities equal for the following
displacement functions?

- 3t 5, (t)
t'= + 3t 2 + 4"3

- 5 -
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Review Exercise #5: (TO end of lesson 221.20-4)

1. Using data tables, find in x for x = .001, .01, .1, .5, 1
2, 4, 6, 8, 10. Use your table of values to plot a graph
of £n x versus x.

1log(b) 10,500

(d) tn e -At(e) log 104/t

Find (a)2.•

3. If A(t) = Aoe- At prove that half-life t~ = 0.693
X

4. The decay constant for a radionuclide is 3.8 x 10- 5

Find the
-,s .

(a) half-life

(b) number of half-lives to decay from 8 Ci to 1 Ci.

(e) time for activity to die down to 1% original

(d) time for activity to die from 2 Ci to 100 ~Ci

(e) number of radioactive nuclei in a 2 Ci source

(1 Ci = 3.7 x 10'0 dps)

5. Given 6k = .008, L = 0.25, Po = 10 watts, pet) =
6k

t
L

(al find P(t), p1t) at t = 20 minutes

(b) If rated power were 1000 MW, find the time to reach
rated power.

6. ~kGiven pet) = Poe ~t show that rate log power is directly
proportional to 6k. 'Explain the importance of a rate log

L
meter to reactor operation.

7. Differentiate with respect to variable x or t as applicable:

(a) 6 (b) 2x' 11x 2 + 14 (e) -IX + 2- -
IX x

(d) 2x' (e) 100e-4t (f) e 2/ te

- 6 -
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Review Exercise #6, (To end of lesson 221.20-4)

1. Differentiate: (a) x 15 (b)
-2

(c) xz-x-
IX rx

(d) IX (e) e- l / x 'e

2. Find vet) and aCt) given

(a) set) 50t 9.8t' (b) s (t) t + t= = e

(c) s (t) = 2t' - 14t 2 + 5t - 8

3. Find equation of tangent and normal to y = x' - 6x - 16 for

(a) x = -1 (b) x = 3

4. Find equation of the line

(a) through (-2,5) and (6,-1)

(b) through (4,1) and having y-intercept of -3.

5. Find slope and y-intercept of 4x + 5y - 13 = O.

6. Find the roots of f(x) = Xl - 6x - 16.

,

7. Given t:.k
6k

t
LPoe

:= .005, L = .12 5, Po = 50 W, find, using pet) =

(a) reactor power after 2 minutes

(b) time for reactor to gain from 1% to 100% power.

8. Find (a) ~n
-t'

(b) log 10rte

9. Given t" = 10 minutes, find

(a) decay constant (b) time for source to decay
from 0.5 Ci to 10 ~Ci

10. Find the activity of a source consisting of 2.0 x 10 15 radio­
active atoms if the decay constant is 6.5 x 10- 4

5-
1 in

(a) dps (b) curies
- 7 -
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Review Exercise *7: Integration Problems (Lesson 221.30-1)

1. Find the area under the following curves between the indicated
limits:

(a) y = 2x + 1, x = 0 to x = 5

(b) Y = rx x = 4 to x = 9,
( c) y = rx' + 3x + 2 , x = 8 to " = 27

2. Find (i) v(t) (ii) s (t) given the following:

(a) a (t) = -2, v (0) = 6 , s (0) = 0

(b) a (t) = 21t, v (0) = o, s (0) = 100

(c) a (t) = -t + 3, v (0) = va, s (0) = 0

3.

4.

( a) Given ~= 4x + 5 find y

(b) Given ds
,/,

find s (t)
dt

~ t

( c) Given dv
6t find v(t)

dt
~

Find v(t) and s (t) given

(a) a(t) = -9.B In/s 2 vIOl = vo , s(O) = 0

(b) a (t) = 0 In/s 2 vIOl = va' s (0) = 0

( c) a(t) = rt In/5 2 V (0) = va' s (0) = 10 m

5. Integrate:

(a) x' - 2 (b) 2t' - 4t

(c) rx (d) t- S

(d) 2
(f) 5

- + 14
x' rx

6. Find the displacement
is

( a) v(t) = 2t - 3

(b) v (t) = 3 It+ 4

function s(t) if the velocity function

7. Find v (t) and s (t) , given

( a) a (t) = -5 rn/s 2
, vIOl = 10 mis, s (0) = 0

(b) a (t) = 2t 2 , V (0) = o, s (0) ~ 0

- 8 -
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Review Exercise #8: (To end of lesson 221. 30-1)

1. Given f(x) = x 3 + x 2
- 17x + 15. Graph y = f(x), and label

the roots of f(x) = o.

2. Find the roots of flex) = 0, given f(x) as in Question #1.
What is the significance of these roots to the curve y = f(x)?

3. Find the equation of the tangent and normal to y = f(x) of
Question #1 at x = 1.

4. Evaluate

(a) e 2n 0.1

(d) log lOY

(b) 1010g t'

(e) -2n e-0 • 4

(e)

( f)

-2/t
~n e

1010g 100 (g) e~n At

5. A source consisting of 8.6 x 10 13 radioactive atoms is
decaying at the rate of 7.5 x 10 9 dps. Find

(a) the decay constant
(b) the half-life
(e) the time required for the activity to die to 1 ~Ci.

6. If the half-life of a radionuclide is 8.4 minutes, find

(a) the decay constant

(b) the time for source activity to decrease by a factor
of 1000.

7. Differentiate:

(a) x' 6x' rx (b) x' - 1- +
,/x

(e) rx' ( d) X 2 / 5 + a-x
(e) -2/t' ( f)

x 2 _4
e e

( g) ,/xIx' 1- x

- 9 -
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8. If reactor power builds up from 100 W to 1000 MW is 5.0
minutes and the mean time between neutron generations is
.1 seconds, find the reactivity.

9. If N(t) = Noe- At , prove that ~ = -AN.

10. Find the equation of the line

(a) parallel to Sy - 2x + 3 = 0 and passing through the
origin

(b) perpendicular to 5y - 2x + 3 = 0, and having the same
y-intercept

(0) having an angle of inclination of 45 0 and the same
x-intercept as Sy - 2x + 3 = O.

11. (a) Given f'(x) = -2x + 0.4, find f(x) if f(O) = -7.

(b) Given acceleration
find v(t), s(t).

a (t) = v (0) = I, s(O) = 4,

(e) The RiC of g{x) with respect to x is a
10. Find- ;;Z -

g (x) •

(d) Y increases 3 times as fast as x. If y = -5 when x = 0,
find y as a function of x.

12. Find the area under the curve

(a) y = x' from x = 1.5 to x = 5

(b) x from 0 to 3y ~ e x = x ~

(e) y = rx from x ~ 1 to 8

- 10 -



Review Exercise #9: (To end of Lesson 221.30-2)

221. 40-1

1. Plot Y = 1.Sx, -5 < x < 10.

2. -At 1Plot A VB t where A(t) = Aoe , Ao = 100 Ci, and A = 0.01 s-

(a) using semi-log graph paper for 10 < t < 1000 s.

(b) using linear graph paper for 0 < t < 1000 s.

(Note the advantages/disadvantages of logarithmic graph paper.)

3. The force F to extend a spring varies directly as the
extension x in meters.

the spring constant

in stretching the spring x

ie,

( a)

(b)

F = kx, where k is called

Prove that the work done
meters equals ~kx~.

How much work is done in stretchin~ a spring by 0.25 rn
if its spring constant is 1.2 x 10 N/m?

x'

4. The force of

inversely as

centre, ie,

gravity, F g , on a

the square of its

= GMeMsFg

satellite of mass M
s

varies

distance x from the earth's

where G is the universal gravitation constant, and Me is
the earth's mass.

( a) Prove that the
d meters above
is

w =

work done by a rocket to lift a
the earth's surface (neglecting

GMeMsd
Re (R e+ d)

satellite
friction)

where Re is the earth's radius.

(b) How much energy must the rocket provide to-free the
satellite from earth's gravity altogether?

5. Translate the following rate-of-change statements to
differential equations:

(a) The torque T on a wheel equals the product of the
wheel's moment of inertia I times the time rate of
change of the wheel's angular velocity, w.

- 11 -



(b) The voltage V across an inductor equals the product of
the inductance L times the rate of change of the current
i with respect to time.

6. For a poison-injection shut down of a reactor, gadolineum
(Gdl is injected into the moderator at a concentration of
20 mg Gd/kg D20. This Gd must be removed before the reactor
can be restarted. Moderator cleanup is achieved by cycling
the moderator through ion exchange columns, and the concen­
tration C(t) of Gd remaining in the moderator after t hours
is given by the expression.

C(t) = 20 e- O. 35t rng Gd/kg D,O

Find:

(a) the time required to reduce the concentration to 0.8
mg Gd/kg D20, at which the reactor can be restarted.

(b) an expression for the rate at which Gd is removed,
as a function of time.

(c) the total reduction in Gd concentration during the
first 10 hours.

(d) the average rate of Gd concentration during the first
10 hours

(e) the instantaneous rate of Gd removal at half-time
(t = 5 h). Why is this rate different from that of
(d)?

(f) the average concentration during the first 10 hours.

7. For the V-shaped hydraulic dam illustrated below, assuming
water level coincides with top of dam, find:

(a) the total force exerted by the water against the face
of the dam

(b) the average pressure of the water against the dam
face

(c) the center of pressure exerted by the water.

12 -
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Mathematics - Course 221

APPENDIX 2: QUESTIONS BEARING DIRECTLY ON COURSE 221 CONTENT
FROM RECENT AECB NUCLEAR GENERAL EXAMINATIONS

1. Question #6, October, 1978

Neutron power (linear N), logarithm of neutron power (log N),
rate of change of neutron power (linear rate) and rate of
change of logarithm of neutron power (rate log) are four
types of neutron power signals used for CANDU reactor control.

(a) Which of these signals are used for reactor regulation:

i) at low power?

ii) at high power?

In each case, explain why the signals you selected are
required in order to provide adequate reactor regulation.

(b) Of the four signals listed previously, linear N, linear
rate and rate log are used for CANDU reactor erotection.
Which one(s) of these signals is (are) more l1kely to
respond to dangerous conditions and to activate the pro­
tective system(s) when the reactor is:

i)

ii)

at low power?

at high power?

Explain.

Explain.

2. Question #7, October, 1978

F

o

The above diagram is a schematic representation of the typical
dump valve arrangement for a reactor with moderator dump. The
opening and closing of valves D, E and F are controlled by
channels D, E and F respectively. During five years of reac­
tor operation, the electronics of channels D, E and F were
tested three times a week and four unsafe failures of indi­
vidual channels were found.

February 1979
(Cont'd)

~ 1 -
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2. Question #7, October, 1978 (Cont'd)

(a) Calculate the unreliability of a dump channel.

(b) If the correct operation of one dump line is sufficient
to achieve an efficient dump,

i) list the various combinations of channel failures
that will cause durnp system to fail~

ii) calculate the unreliability of the dump system due
to dump channel failures.

3. Question #5, June, 1978

The above diagram is a schematic representation of the typi­
cal dump valve arrangement for a reactor with moderator dump.
In five years of operation of this reactor, six failures (to
open) of individual valves were found. The dump valves are
tested twice a week.

(a) Calculate the unreliability of:

i) a dump valve,

ii) a dump line.

(b) Suppose that you have a dump system consisting of a
single dump line. Give and briefly discuss one advan­
tage and one disadvantage of using two dump valves in
that line instead of one.

4. Question #7, June, 1977

Give and explain four advantages that result from using trip­
licated instruments arranged in two-out-of-three tripping
circuit instead of a simple circuit actuated by a single
instrument.

- 2 -
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5. Question #11, June, 1977

In a control room we usually find meters which indicate neu­
tron power on a linear and logarithmic scale.

(a) Draw two simple instrument dials, one showing a linear
scale with values of neutron power from 0 to 100% and
the other a lo~arithrnic scale with values of neutron
power from 10- % to 100%.

(b) Given that 200 megawatts is 100% power, mark and iden­
tify the positions on each scale which correspond to the
following power levels:

i) 50% power

ii) 400 watts

iii) 10 kilowatts

6. Question #8, October, 1976

Give and explain three reasons why reactor safety systems
should be tested routinely.

7. Question iI, June, 1975

0.1

0.0001

0.001

0.01

% Full Power

1.0

10

100

The above diagram represents' the face of an instrument which
indicates neutron power on a logarithmic scale. Given that
100 megawatts is 100% power, mark the positions on the scale
which correspond to the following power levels:

(a) 50% power

(b) 0.005 megawatts

(c) 500 watts

NOTE: Mark the positions on the above diagram. - , -
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* * * * *

NOTE: Recent AECB nuclear general examinations have contained
many more questions impinging on course 221 content ­
questions regarding nuclear decay rates, rate of fission
product buildup, variation of reactor power with time fol­
lowing reactivity changes, etc. No doubt such topics can
be discussed 9ualitatively without any use of calculus
(and qualitat1ve discussion is all the AECB requires), but
a quantitative treatment of such topics certainly does
involve the use of calculus. Thus a background knowledge
of calculus concepts can hardly fail to quicken one's
insight into such topics, and to aid one's ability to dis­
cuss them definitively, even at the descriptive level.

L.C. Haacke
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Mathematics - Course 321

APPENDIX 3: SOLVING QUADRATIC EQUATIONS

I Introduction

A quadratic [unction is a function of the form

f(x) = ax 2 + bx + 0,

where a~ b , c are real constants.

A quadratic equation is an equation of the form

ax 2 + bx + C = 0

II Roots of a Quadratic Equation

The roots of a quadratic equation are the x-values Which.
satisfy the equation. Therefore, to 80Zve a quadratic equation
is to find its roots.

The roots-of the quadratic equation,

ax 2 + bx + c ~ 0

are given by the formula,

The quantity b 2 -4ac is called the discriminant, designated
110". The value of 0 determines the number and nature of roots
of the quadratic, as summarized in the following table~

Value of 0 = b 2 -4ac Number and Figure
Nature of
Roots

>0 2 real roots 1,2

0 1 real root 3,4

<0 2 complex 5,6
roots
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III Graphical Solution of Quadratic Equations

The graph of a quadratic function y = ax 2 + bx + c is a
paraboZa, and the roots of the corresponding quadratic equation,
ax 2 + bx + c = 0, are the x-coordinates of the parabola's
x-intercepts, since y = 0 at these x-values.

The "ax 211 term dominates the value ofax 2 + bx + c for large
values of X, and therefore, the sign of "a" governs whether the
parabola opens upward or downward, as summarized in the following
table:

Value of "all Par abo1 a Opens As in Figures

> 0 upward 1, 3, 5

< 0 downward 2, 4, 6

The graphical significance of "a" and "Oil values is sum­
marized in Figures 1 to 6.

IV Examples

(1) Y = 2x' - 3x - 4
( 2) Y = -x' + 6x - 9
(3) Y = x' + x + 2

2 -

(a) Graph each of the above quadratic functions.

(b) From the graphs, find the roots of the corresponding
quadratic equations.

(c) Calculate the roots by formula.
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Summary of Graphical Significance of
Values of nan and 110" = b t - 4ac"

a>O a<O

Figure 1 Figure 2
2 real roots Xl, X2

y

Figure 3

y

(0 > 0)

1 real root, Xl

(D = 0)

y

-ff1-+--+-X

Figure 4

y

X,

--El11--~L-_-X

X,

x

-1'11------- X

Figure 5

y

2 complex roots

(D < 0)

Figure 6

y

X



Solutions to Examples:

1. (al
x -2 -1 0 1 2 3

Y 10 1 -4 -5 -2 5

y

12

,y =
8

4

-+--...,-ffi----....+--x
-2 -1

-4

-8

1 3

(b) From graph, roots of 2x 2
- 3x - 4 are approximately

-0.8, 2.3.

(e)

2. (a)

a =

. .
2, b ~ -3, c = -4

_

-1...:3"-)~+,-,1,-,-(--=3-1_'-_4,-,(,,,21~(_-4.:..L·­roots are x = -
2 (2)

3 + I4T
= 4

= 2.35 or -0.85 (to 2 D.P.)

- 4 -

x 0 1 2 3 4 5 6

Y -9 -4 -1 0 -1 -4 -9
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Y

-4

-8

2 4 6

= _X 2 ... 6x - 9

(b) The graph indicates that _x 2 + 6x - 9 = 0 has only
one root, namely 3.

(e) a = -1, b = 6, e = -9

-6 + /6' - 4{ 1) (-9)roots are x = -. •
2 (-1)

= _-::,.6...-'+=-,10-,,-0

-2

= 3

3. (a)

x -3 -2 -1 0 1 2

jY 8 4 2 2 4 6

- .......- .......--<---+--+---+- X
-6 H -2 2 4



(b) Since the parabola does not intersect the x-axis,
x 2 + x + 2 = 0 has no real roots.

(e) a = 1, b = 1, e = 2

roots are -1 + IT' - 4 (1) (2)
x = =

2 (1)

-1 + 1-7=
2

Since b' - 4ae <0, roots are complex.

V Other Methods of Solving Quadratics

Alternative methods for solving quadratic equations include

(1) factoring, and
(2) completing the square.

Trainees are not required to be able to use these alternative
methods, but may use such methods at their discretion.

ASSIGNMENT

Solve each of the following quadratic equations

(a) by graphing the associated quadrati~ function

(b) by using the farmula_

1. x' - 3 = 0

2. x' - 2x - B = 0

3. 4x' - 15x + 9 = 0

4 . 9x' - 24x + 16 = 0

5. -x' + 5x + 2 = 0

6. 2x' + x + 3 = 0

L. Haacke
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APPENDIX 4:

Mathematics - Course 221

ANSWERS TO ASSIGNMENTS AND REVIEW EXERCISES

422010-4 Assignment

20 (al 10 7 (bl 10 (el 1O' (dl 10 12

(el 10-' (£1 10-' (g) la~1t (hl 10-'

2. (al 10.... 2 (bl 10-' (el 10· Cd) 1

(el -10- 7 (fl 10 13 (gl 10 10 (h) 10 ... 13

(i) 10' (jl 10 .... 11 (kl 10 13 (ll -10

3. (al 100 (bl 0.001 (el 100,000 (dl 0.000001

(el 1,000,000 (fl 0.0001

4. (al 1.65 x 10' (b) 6.93 x 10-' ( e) 3.75 x 10

(d) 2.5 x 10-· eel 2.934 x 10' {fl 2001 x 10-'

(g)
1 "

10 • (hl 2.0 x 10-' (il -2.49 x 10 2

(j) 9.7 X 10- 1 (k) 1. 76 x 10- 1 (1) 2.7

(ml 9.57 x 10' (n) 1. 75 x la-lit- (0) 2.4 x 10 1

(p) 3.2 X 10 12

5. (a) 2.4 x 10' (b) 5.6 x 10 12 (e) -1.1 x lOllt

(d) -4.3 x 10' (e) 4.5 x 10 12

6. (a) 9.3 " 10 • (b) 6.9 x 10 5 (e) 3.4 x 10 7

(d) 5.5 x 10- 12 (e) 5.5 x 10 2

7. (a) 2.3 x 10- 1 (b) 9.4 x 10- 5

April 1980 - , -
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421.20-1 Assignment

1. (a) 5 (b) 9 (e) 5-106

2. (a) a" (b) 3 a 10 (e) b" ( e) 3'32

(e) m' (f) a 16 (g) 1 (h) b'
a

(i) a" (j) -27a 6 (k) L x 20 (1) %a
32

(m) % (n) 9x2.y (0) 1 (p) x -,
a y

3. (a) 27 (b) 1 (e) 1 (d) 6l
32 2" 4

(e) 1 (f) 6 (g) -2 (h) -32-"27

(i 1 12
9

4. (a) 1 (b) 4x' (e) 3 5 a 2b 3 (d) lay'z'

x'

5. 9.1 x lO-2a g

6. 6.2 x 10 1 B fissions/s

7 • (a) lla (b) 6x 2 + 6x + 5xy + 5

(e) 25x + 20y (d) 8a + 5b + 12e

(e) 5k - 2j (f) lOa

(g) 4xy 2 + Y (h) 4x2y 3 + 1 - x

(i) -5x - y + 4z

8. (a) -2y (b) 1 (e) 5b (d) -2
3y

(e) x (f) -3abc ( g) ~ (h) 1 x'
x 2

(i) -24x 2 y"p (j ) 22p 2 qs 2 t



9. ( a) x' - 4xy - 32 y' (b) 15x 2 + 22x + 8

(e) 12a 2 -23ae + 10.0 2 (d) x' _ y'

(e) 0 (fl 2x + Sy

(g) a' -1 (h) 4x + 5

(il 3x - 8 (j) _(x 2 + X - 3)

10. (a) 32m 2 nx (b) -36ab 2 c 2d

(e) -l8my + lSty (dl 20h - 30k

(e) 2x - 23y ( f) x' +XY

(g) 3e + k (h) -b + 7e

(i) -3a - 6x (j) 2ab

(k) 2xy

221. 40-4

- 3 -
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421.40-1 Assignment

1.

y

10

U(-3,8)(;)
S (15 ,10)0

Q(-2,4)0 5
GP(3,4)

f-----+------+------+-----+----~x

-5

Q R(-5,-4)

o

-5

5

0S(4,-2)

10 15

3. (a) 12 A

4. (a) 893 kPa

- 4 -

(b) 2.4 IJ

(b) 12.5 em



421.40-2 Assignment

1. (a) C(r) = 2TIr

(b) d[t,v) = vt

(e) A(r,h) = 211"r 2 + 2TIrh

2. f(6) = 9; f (0) = -3 ; f(-2) = -7

3. H(0) = 9, H[1) = o, H(a) = 0

4. d (p) =q£

5. (a) ±2

(b) no real roots since curve does not cross x-axis

(e) -2.9, -0.2, 3.1

(d) 3, -2

(e) -1. 53, -0.33, 1. 87

221. 40-4

- 5 -
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221. 40-4

321.10-3 Assignment

1. (a) (i) R= 1. 6711 Iii) I = 1.2 A.

(b) (i) R = 2.1711 Iii) I = 4.6 X 10-2 A.

2. (a) 7.4 x 10- 5 a-I (b) 2.6 h

3. (a)
1

(b) 0.6 (e) 9 (d) 42

(e) -0.2 (f) -10 (g) 10 (h) 8

4. 0.84 kl1

5. 1.1 x 10 2 hr.

6. (a) -3.1 (b) -9.8 (e) 2.6 (d) 1. 7 x 10'
2 • 7

(e) 1.1 ( f) -11 (g) x = 3 = 19

(h) x = 71+ • 8 = 1.1 x 10' (i) x = 92 • 1 = 1.0 X 10 2

(j) x= 4 5 '3 = 1.6 x 10' (k) x = 17 16 • e = 4.7 X 10 20

(1) x = 6 705 = 6.9 x 10'

7. (a)
3 1 log Y + 5"4 log X + "6 "4 log Z

(b) log
15

Z - 9 logX + 2" log Y

(e) ~ log X
5 ~ log Z- IT log Y +



321.10-3 Assignment

8. (a) 1339.43

(d) 50.12

(b) 3.02 x 10-'

(e) 5.01 x 10- 5

221. 40-4

(e) 25.31

(f) 0.76

9. (a) 9.1 x 10'

321.10-4 Assignment'

4. 3.3 minutes

5. 1.55 x 10' MPC

6. 19.5 s

(b) 0.46 (e) 1. 2 (d) 3.2 x 10'

- 7 -
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1. 3 x 10-'

2. 2 x 10-"

3 • (a) 1.4 x 10-'

4. 1.7 X 10- 2

5. 4 x 10-"

6. 3 X 10- 3

7. every 4 weeks

221.10-1 Assignment

(b) 1.4 x 10-'
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221.20-1 Assignment

Slope Angle of Equation
Inclination

(a) 4 53.1° 4x 3y 0:3 - =

(b) -2 146.3' 2x + 3y 6 0:3 - =

(e) -1 US' x + y = 0

(d) 0 O' y - 2 = 0

(e) ~ 90' x + 3 = 0

2. Slope PQ ~ slope OR = ~; Q is common to segments PO, QR

.e. P,Q, R are collinear.

3.

Slope x - intercept y - intercept

(a) -1 4 4

(b)
5 4 -54"

(e) 0 6none 5

(d) undefined -4
15

none

- 9 -
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1.

221.20-2 Assignment

Tangent slope at (x,f(x» Tangent slope at x = 2'

(al 10 x - 2 18

(b) 2 1-= 2"x

2. (a) ax' - 12x 2 (b)
2x
:T­a

2a'
;or-

- 10 -

(e) 3 -'h or 3-'2 x 27x"J'

3. (a) 2x - 6 (b) lOx' - 3x'

(e) 2ax + b (e) 2 -'/\ -';,
:r x - x '

4. (a) 11 (b) -3

(e)
1 and 1-3"
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221.20-3 Assignment

1. (a) -4 (b) -2 (e)
1
2"

2. (-1,-3)

3.

Tangent Equation Normal Equation

(a) x + y - 2 = 0 x - y = 0

(b) y = 4 x = 1

4.

v(t) v (2) a (tl a (2)

(a) 16t - 3 29 16 16

(b) -Bt - 4t' -4B -B - 12t' -56

(e) 20t - BOlt' 20 20 + 160It' 40

5. 25m

6. Roots of £1 (x) = 0 are x = 2.73, -0.73; y = f(x) has a
local maximum at x = -0.73, and a local minimum at x = 2.73.

- 11 -



221.20-4 Assignment

1. (a)

(e)

2x ex2- 4 (b)

(d)

e-X

x-'he_X"",lh orx-'he-1pX

2. (al (il v (tl ~ e t - 3t'

(iii) v(2) ~ e' - 12

(b) (i) v (t) -t + 2~ -e

(iii) v (2) ~ 2 - e-'

3.

(ii) art) ~ e t - 6t

(ii) a(t) ~ e- t

t 0 0.25 0.5 1 l.5 2.0 2.5 2.75 3

s 1 1.27 1.52 lo 72 lolO -0.6l -3.44 -5.15 -6.91

v 1 1.10 0.90 -0.28 -2.27 -4.6l -6.57 -7.04 -6.9l

a 1 -0.22 -l.35 -3.28 -4.52 -4.61 -2.82 -0.86 2.09

4. 9.3 X 10- 12 S-1

5. ( a) 0.45 Ci

(b) (i) 5.2 x 10 13 (iil 1.1 x 10 12

(e) (il 0.34 Ci (ii) 7.1 mCi

(dl 48 minutes

(e) 4.4 hours

12 -
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6. see text

7. By definition of t~, O.SAO = AOe-At~

ln 0.5 ~ -At~

lnO.5
t~ ~ - -A

But In 0.5 = Inl..s. = InZ- 1 = -ln2

ln2
tL~
~ --:\"

9 •

t~ 0
1 2 3

--;;~) [i 10 '" 7.94 x 10 19 6.31 x 10 19 5.01 x 1019

-

I-t 5 10 15 I 18,
I q

,
--

10" I 1.58 xIN (t) Ii 3.16 x 10 19 9.99 X 10 16 3.16 x 10 16

,
I

I
-l

10. t(s) P (W) P(%F.P.)

0 100 1 x 10- 4

20 2.7 x 10 2 2.7 X 10-'+
40 7.4 x 10 2 7.4 X 10- 4

60 2.0 x 10 3 2.0 x 10- 3

80 5.5 x 10 ' 5.5 x 10- 3

100 1.5 x 10' 1.5 X 10- 2

120 4.0 x 10 " 4.0 X 10- 2

140 1.1 x 105 1.1 X 10- 1

160 3.0 x 105 3.0 X 10- 1

180 8.1 x 105 8.1 X 1Q-l
200 2.2 X 10' 2.2
220 6.0 x 10' 6.0
240 1.6 x 10 7 16
260 4.4 x 10 7 44
280 1.2 x 10 ' 1.2 x 10'
300 3.3 x 10' 3.3 x 10 2

-~_ ..._-----,lr:' (%F.P./s)

5 x 10-'
1.4 X 10- 5
3.7 X 10- 5

1.Oxl0- 4

2.7 X 10- 4

7.4 X 10- 4

2.0 X 10- 3

5.5 X 10- 3
i.5 X 10- 2

:1,1 x 10- 2

0.11
0.30
0.81
2.2
6.0

:I 6 • 3

- 13 -



po (c) = ~k
L

(c) The rate at which the needle moves across the linear scale
(linear rate) increases exponentially with time- the needle
moves imperceptibly for about 3 minutes, then moves ever
more rapidly across the scale, covering the final half of
the range in just 14 seconds. This is just as one would
expect from the mathematical expression

~kc
L

The rate at which the needle moveS across the log scale
(rate log P) is constant, ie, the needle advances by the
same amount each 20 seconds. This is in agreement with the
mathematical expression

d ~kdt log P(t) = J; log e (cf. question 12)

(d) linear scale more sensitive at high power; log scale at
low power

(el til signal output proportional to log P is more sensitive
to changes in P at low power (510% full power, say)

(ii) signal output proportional to P is more sensitive to
changes in P at high power

11. see text

- 14 -
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221.20-5 Assignment

1. Force F equals mass m times Ric velocity v wrt time t.

Angular velocity w equals Ric angular displacement a
wrt time t.

Angular acceleration a equals Ric angular veloctiy w wrt
time t.

Torque ~ equals moment of intertia I times Ric angular
velocity w wrt time t.

Force F equals
wrt distance r

rate of decrease of
from force center.

potential energy E
p

Power P equals time rate of energy output (or conversion) •

Electric current i equals rate of flow of charge q.

Capacitor current i c equals capacitance C times Ric capaci­
tor voltage Vc wrt time t.

Inductor voltage VL equals inductance L times Ric inductor
current i L wrt time t.

Rate of decrease of number N of radioactive nuclei remaining
at time t equals decay constant A times N.

Rate of decrease in radioactive Source activity A equals
decay constant A times A.

Rate of decrease in number N of nuclear projectiles equals
macroscopic cross section r times penetration depth x.

'Linear rate' power P equals reactivity ~k times power P
divided by mean neutron lifetime L.

'Rate log power' equals reactivity ~k divided by mean neutron
lifetime L.

Specific heat capacity C of a substance equals Ric quantity
Q of heat stored in substance wrt temperature T of substance,
divided by the mass m of the substance.

Heat Q flow rate (in a fluid) equals specific heat capacity
C times temperature difference ~T across system times masS
m flow rate.

_ 11; _



Heat H flow rate equals minus thermal conductivity k times
croSS sectional area A times RIC (rate of increase) tempera­
ture T wrt depth x in conducting med! urn. (Minus sign indi­
cates directions of heat flow and increasing temperature are
opposite .)

RIc of gas volume V wrt temperature T equals number n of
moles of gas times gas constant R divided by gas pressure P.

Voltage V induced across a coil equals number N of turns in
coil times rate of decrease in magnetic flux ~ linking the
coils.

2. See Table 1, lesson 221.20-5.

4 • (a) _Mdil
dt

- 16 -

(b) (i) V2 (t) = 6t 2
- 12t (ii) V2 (2l = 0



221.30-1 Assigmnent

l. see text

2. See text

3
e t +

,
3. (a) -_ Xl + C (b) !<t + C2

(e) 2 , + lx 2 - 5x + C (d) 2erx + C']X 2

(e) x' 3 'I
tfl

-t' + ~t 'h + c- _x 3 + C -e4 5

4.

V(t) s (t)

(al 0 0

tb) 2t + 10 t' + lOt + 14

(e) t' + Vo ! t' + vat3

(d) 11 - e- t -t + llt - 11e

5. 5 (t) = vot - 4.9t'

6 • (a) 99 (b) 37!
3

(el 72! (d) '>(1 _ e- il )
3

7 . tal
7

(b) 77.579
15

(e) 23 - e'

221.40-4
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221.30-2 Assignment

1. (a) 8 square units (b) 2lt square units

(e) 9 square units

2. (b) (i) 7.2 x 10 2 mrern (ii) 1.8 x 10' mrem/h

3. (a) Va 2C
(1 - e- 2T / RC ) (b) 1 W2T

4. (a) v(t) ; -6 -9.8t . s (t) ; 1000 - 6t - 4.9t',

(b) 14 seconds

( e) -73 mls

(d) 6.5 x 10 2 m

5. 12 J

6. (a) 1.6 x 10' N (b) 9.8 x 10' Pa

( e) at (0,11)

18 -



221.40-1 Review Exercises

Review Exercise U

1- 4 x 10- , 2. 8 X 10- 4

3. (al 2 x 10- 3 (b) 3 x 10- 6

4. (a) 3.7 x 10- 3 (b) test daily

(e) test every 12 weeks

5. 0.08

6 • (a) 3 x 10-' (b) 2 x 10-'

Review Exercise #2

1- (a) 3x + y - 10 = 0 (b) 4x + 3y + 1 = 0

( e) 2x - 5y - 25 = 0 (d) 2x - 5y - 13 = 0

(e) 3x - 5y - 28 = 0 ( f) x + y + 8 = 0

2. (a) 5 (b) 40

(e I x' + 2ax - 2x + a' - 2a + 5

3 . ne real roots

4. ( a) slope = 6 y-intercept 8
5 = 5

1 . y-intercept = 3
(b) slope = , 4"-10

5. (a) (i) 5 (ii) -20"3

(b) (i) 6 (ii) 1
-2"

(e) (i) 3
(ii) 1

-5 20

221.40-4
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Review Exercise *3

1. (b) 4 mls ( e) 2t + 2 mls (d) 6 mls

-lilt
1 -'h

2. (a) v(t) = ; v(4l = -~ ; a(tl = It

(b) v(tl = 3t' - 4 v( 5l =n ; a(t) = 6t

3. (a) 15x' 2 (b) 8- 3J!X

(e 1 -2x - 4x- s (d) 3x - 1
2Tx

4. (al tangent 4x + y - 2 = 0

normal x - 4y + 25 = 0

(bl tangent y = 2

normal x = 1

5. (al 3.0 Ci (b) 1.1 " 10 13

6. (a) 4.2 Ci (b) 16 h (e) 53 h (d) 3.1 x 10 16

Review Exercise #4

1. (- 5, 581 ) and (3,-11)
3

2. t = 5 and t
2

-2 = 3"

3. ( a) 1 and x 1
x = = 3

(b) 5 and 3x = -2 5"

4.

- 20 -

3
t = 2 and t = -1



Review Exercise #5

2. (a) 2.5 (b) -4 (e) 4/t (d) -At

4. (a) 5.1 h (b) 3 ( e) 34 h (d) 72h

(e) 1.9 x 10 15

5. (a) P = 4.8 X 10 17 W ; pI = 1.5 x 10 16 W/S

(b) 9.6 minutes

7 . ( a) -3/rx' (b) 6x 2 - 22x

(e) 1 2 (d) 4xe
2x2

2/x x'

(e) -400 e-4t (f) _2 e,/t
t'

Review Exercise #6

1. (a) 15x lt (b) -%x

(e) ~ x'/, 2 _'/,
(d) e rx

3 - 3" x
Vx

(e) 2 _1/X 2

X'" e

2. (a) v = 50 - 19.6t a = -19.6

(b)
t + 1 e

t
v = e a =

(e) v = 6t' - 28t + 5 ; a = 12t - 28

3. (a) tangent: ax + y + 17 = 0

normal: x - 8y - 71 = 0

(b) tangent; y + 25 = 0

normal: x = 3

221.40-4
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4. (a) 3x + 4y - 14= 0

(b) x - y - 3 = 0

5. slope 4 y-intercept = l3= -5 ; 5

6. 8, -2

7. (al 7.4 kW (bl 1.1 x 10' 5 or 1.8 minutes

8. (a) -t' (b l rt

9. (a) 1.2 x 10-' s-, (bl 2.6 h

10. (a) 1.3 x 10 12 dps (bl 35 Ci

Review Exercise #7

1. (al 30 (bl 12 2 (ol 1162.13

2. (al v = -2t + 6 s = -t' + 6t

(b 1 it';, s 8 'h + 100v = = 15 t3

(ol v = -t'/2 + 3t + Vo

s = -t' /6 + 3t'/2 + vat

3. (a) y = 2x' + 5x + C

(b) s (t) =
2 t 'h + C (0) v(tl = 3t' + C5

4 • (a) v (t) = -9.8t + Vo . s (t) = -4.9t' + vot,

(b) v (t) = Vo . s (t) = vot,

(0 l v (t) = ~ t ';' + Vo . s (t) = ..2... t ';, + vot + 104
,

28
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221. 40-4

5. (a) x'
- 2x + C (b)

x' 2x' + c3" 2-

(e) 1 X
3h

+ c (d)
x'

C3 -4 +

(e) 2 + C (f) 10£ + 14x + C-x

6 . (a) t' - 3t +c (bl 2t% + 4t + C

7 . ( a) v(t) = -5t + 10 ; 8 (tl = - ~, + lOt2

(b) v (t) = ~t3 ; 8 (t) = t'/6
3

Review Exercise #8

1. Roots are x = -5, 1, 3

2. Roots are x = -2.73, 2.07.
Significance: fl = a => tangent slope = a

•• • curve y = f(x) has maximum at x = -2.73 and minimum
at x = 2.07.

3. tangent: 12x + y - 12 = 0

normal: x - 12y - 1 = 0

4. (a) 0.1 (b) t'

(e) 0.4 (f) 100

5. (a) A = 8.7 X 10- 5 8- 1

(e) 39 h

6. (a) 1.4 x 10-' 8- 1

(e)

(g) At

(b) 2.2 h

(b) 1.4 h

( d) y
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(b) 25x + lOy + 6 = 0

'::'::.J..':IU-<t

7. (a) 7x' - l8x 2 + ! x-'j,
3

2 _'I,
(e) - x '3

(e) 4 -.It'p-e

(g)
7 x l5,h + 1 x-%
2" 2

8. 0.0054

lU. (a) 2x - 5y = 0

(e) 2x - 2y - 3 = 0

(b)

(d)

( f)

~X%+lX-%
2 2

2 -'II a
5" x - XT

x 2 - 42x e

ll. (a} -x' + O.4x - 7

(b) v (t) = 41t + 1 ; s (t) = !t'A + t + 4
3

(e) a lOx + C- -x

(d) Y = 3x - 5

12. (a) 155 (correct to 3 S.F.)

(b) e' - 1

(e) 11 1
4"

Review Exercise #9

3. (b) 3.8 x 10' J

4 . (b) GMeMs/Re

5. ( a) T = I dw (b) V = L di
dt dt
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6. (a) 9.2 h

(c) 19 mgGd/kgD,O

221. 40- 4

(b) -7.0 e-O. 35t

(d) 1.9 mgGd/kgD,O per hour

(el 1.2 mgGd/kgD,O, different from (d) since c' (tl is
exponential, not linear in time.

(f) 1. 7 mgGd/kgD,O.

7. (a) 5.3 x 10' N

(b) 0.13 MFa

(c) 39 m vertically above "V" bottom

221. 40-3 Assignment

1. ±1.73 2 . -2, 4

3. 3 3 4 • 4
4" , 3"

-1 + r-TI" (no real roots)5. -0.37, 5.37 6.
4

L.C. Haacke
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